28 research outputs found

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    The Protein Partners of GTP Cyclohydrolase I in Rat Organs

    Get PDF
    GTP cyclohydrolase I (GCH1) is the rate-limiting enzyme for tetrahydrobiopterin biosynthesis and has been shown to be a promising therapeutic target in ischemic heart disease, hypertension, atherosclerosis and diabetes. The endogenous GCH1-interacting partners have not been identified. Here, we determined endogenous GCH1-interacting proteins in rat.A pulldown and proteomics approach were used to identify GCH1 interacting proteins in rat liver, brain, heart and kidney. We demonstrated that GCH1 interacts with at least 17 proteins including GTP cyclohydrolase I feedback regulatory protein (GFRP) in rat liver by affinity purification followed by proteomics and validated six protein partners in liver, brain, heart and kidney by immunoblotting. GCH1 interacts with GFRP and very long-chain specific acyl-CoA dehydrogenase in the liver, tubulin beta-2A chain in the liver and brain, DnaJ homolog subfamily A member 1 and fatty aldehyde dehydrogenase in the liver, heart and kidney and eukaryotic translation initiation factor 3 subunit I (EIF3I) in all organs tested. Furthermore, GCH1 associates with mitochondrial proteins and GCH1 itself locates in mitochondria.GCH1 interacts with proteins in an organ dependant manner and EIF3I might be a general regulator of GCH1. Our finding indicates GCH1 might have broader functions beyond tetrahydrobiopterin biosynthesis

    Marine Cyanobacteria Compounds with Anticancer Properties: Implication of Apoptosis

    Get PDF
    Marine cyanobacteria have been proved to be an important source of potential anticancer drugs. Although several compounds were found to be cytotoxic to cancer cells in culture, the pathways by which cells are affected are still poorly elucidated. For some compounds, cancer cell death was attributed to an implication of apoptosis through morphological apoptotic features, implication of caspases and proteins of the Bcl-2 family, and other mechanisms such as interference with microtubules dynamics, cell cycle arrest and inhibition of proteases other than caspases

    Natural products in modern life science

    Get PDF
    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure–activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific questions in Nature can be of value to increase the attraction for young students in modern life science

    Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases

    Get PDF
    Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics

    Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-kappa B in macrophages

    No full text
    Lycopene has antioxidant, anticancer, and anti-inflammatory effects with molecular mechanisms not fully identified. We investigated the effects of lycopene on the inflammatory responses to lipopolysaccharide (LPS) in RAW264.7 cells and the signal transduction pathways involved. Lycopene inhibited LPS-induced production of nitric oxide (NO) and interleukin-6 (IL-6) with decreased mRNAs of inducible nitric oxide synthase and IL-6 but had no effect on TNF-alpha. Further study showed that lycopene also inhibited LPS-induced I kappa B phosphorylation, I kappa B degradation, and NF-kappa B translocation. Moreover, lycopene blocked the phosphorylation of ERK1/2 and p38 MAP kinase but not c-Jun NH2-terminal kinase. To confirm the causal link between MAP kinase inhibition and its anti-inflammatory effects, we treated the cells with SB 203580 and U0126. These inhibitors significantly inhibited LPS-induced NO and IL-6 formation. Lycopene inhibits the inflammatory response of RAW 264.7 cells to LPS through inhibiting ERK/p38 MAP kinase and the NF-kappa B pathway

    Transcriptional responses of in vivo praziquantel exposure in schistosomes identifies a functional role for calcium signalling pathway member CamKII

    Get PDF
    Treatment for clinical schistosomiasis has relied centrally on the broad spectrum anthelmintic praziquantel; however, there is limited information on its mode of action or the molecular response of the parasite. This paper presents a transcriptional and functional approach to defining the molecular responses of schistosomes to praziquantel. Differential gene expression in Schistosoma japonicum was investigated by transcriptome-wide microarray analysis of adult worms perfused from infected mice after 0.5 to 24 hours after oral administration of sub-lethal doses of praziquantel. Genes up-regulated initially in male parasites were associated with "Tegument/Muscle Repair" and "Lipid/Ion Regulation" functions and were followed by "Drug Resistance" and "Ion Regulation" associated genes. Prominent responses induced in female worms included upregulation of "Ca²⁺ Regulation" and "Drug Resistance" genes and later by transcripts of "Detoxification" and "Pathogen Defense" mechanisms. A subset of highly over-expressed genes, with putative drug resistance/detoxification roles or Ca²⁺-dependant/modulatory functions, were validated by qPCR. The leading candidate among these was CamKII, a putative calcium/calmodulin-dependent protein kinase type II delta chain. RNA interference was employed to knockdown CamKII in S. japonicum to determine the role of CamKII in the response to praziquantel. After partial-knockdown, schistosomes were analysed using IC₅₀ concentrations (50% worm motility) and quantitative monitoring of parasite movement. When CamKII transcription was reduced by 50-69% in S. japonicum, the subsequent effect of an IC₅₀ dosage of praziquantel was exacerbated, reducing motility from 47% to 27% in female worms and from 61% to 23% in males. These observations indicated that CamKII mitigates the effects of praziquantel, probably through stabilising Ca²⁺ fluxes within parasite muscles and tegument. Together, these studies comprehensively charted transcriptional changes upon exposure to praziquantel and, notably, identified CamKII as potentially central to the, as yet undefined, mode of action of praziquantel
    corecore