2,983 research outputs found

    Sexual dimorphisms in leukocyte trafficking in a mouse peritonitis model

    Get PDF
    E.K was funded by the British Heart Foundation Grant # FS113028789 and JRW was funded by Arthritis Research-UK Grant #19207

    The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis

    Get PDF
    Acknowledgements We wish to thank Jorge Galán, Gregory Pazour, Derek Toomre, Giuliano Callaini, Joel Rosenbaum, Alessandra Boletta and Francesco Blasi for generously providing reagents and for productive discussions, and Sonia Grassini for technical assistance. The work was carried out with the financial support of Telethon (GGP11021) and AIRC.Peer reviewedPostprin

    The endogenous caspase-8 inhibitor c-FLIPL regulates ER morphology and crosstalk with mitochondria

    Get PDF
    Components of the death receptors-mediated pathways like caspase-8 have been identified in complexes at intracellular membranes to spatially restrict the processing of local targets. In this study, we report that the long isoform of the cellular FLICE-inhibitory protein (c-FLIPL), a well- known inhibitor of the extrinsic cell death initiator caspase-8, localizes at the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs). ER morphology was disrupted and ER Ca2+-release as well as ER-mitochondria tethering were decreased in c-FLIP-/- mouse embryonic fibroblasts (MEFs). Mechanistically, c-FLIP ablation resulted in enhanced basal caspase-8 activation and in caspase-mediated processing of the ER-shaping protein reticulon-4 (RTN4) that was corrected by re-introduction of c-FLIPL and caspase inhibition, resulting in the recovery of a normal ER morphology and ER-mitochondria juxtaposition. Thus, the caspase-8 inhibitor c-FLIPL emerges as a component of the MAMs signaling platforms, where caspases appear to regulate ER morphology and ER-mitochondria crosstalk by impinging on ER-shaping proteins like the RTN4

    Sandstone matrix acidizing knowledge and future development

    Get PDF
    To meet rising global demands for energy, the oil and gas industry continuously strives to develop innovative oilfield technologies. With the development of new enhanced oil recovery techniques, sandstone acidizing has been significantly developed to contribute to the petroleum industry. Different acid combinations have been applied to the formation, which result in minimizing the near wellbore damage and improving the well productivity. A combination of hydrofluoric acid and hydrochloric acid (HF:HCl) known as mud acid has gained attractiveness in improving the porosity and permeability of the reservoir formation. However, high-temperature matrix acidizing is now growing since most of the wells nowadays become deeper and hotter temperature reservoirs, with a temperature higher than 200 °F. As a result, mud acid becomes corrosive, forms precipitates and reacts rapidly, which causes early consumption of acid, hence becoming less efficient due to high pH value. However, different acids have been developed to combat these problems where studies on retarded mud acids, organic-HF acids, emulsified acids, chelating agents have shown their effectiveness at different conditions. These acids proved to be alternative to mud acid in sandstone acidizing, but the reaction mechanism and experimental analysis have not yet been investigated. The paper critically reviews the sandstone acidizing mechanism with different acids, problems occurred during the application of different acids and explores the reasons when matrix stimulation is successful over fracturing. This paper also explores the future developing requirement for matrix acidizing treatments and new experimental techniques that can be useful for further development, particularly in developing new acids and acidizing techniques, which would provide better results and information of topology, morphology and mineral dissolution and the challenges associated with implementing these “new” technologies

    Orai1 Channel Inhibition Preserves Left Ventricular Systolic Function and Normal Ca2+ Handling After Pressure Overload

    Get PDF
    Background: Orai1 is a critical ion channel subunit, best recognized as a mediator of storeoperated Ca2+ entry (SOCE) in non-excitable cells. SOCE has recently emerged as a key contributor of cardiac hypertrophy and heart failure but the relevance of Orai1 is still unclear. Methods: To test the role of these Orai1 channels in the cardiac pathophysiology, a transgenic mouse was generated with cardiomyocyte-specific expression of an ion pore-disruptive Orai1R91W mutant (C-dnO1). Synthetic chemistry and channel screening strategies were used to develop JPIII, a small-molecule Orai1 channel inhibitor suitable for in vivo delivery. Results: Adult mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and reduced ventricular function associated with increased Orai1 expression and Orai1-dependent SOCE (assessed by Mn2+ influx). C-dnO1 mice displayed normal cardiac electromechanical function and cellular excitation-contraction coupling despite reduced Orai1-dependent SOCE. 5 weeks after TAC, C-dnO1 mice were protected from systolic dysfunction (assessed by preserved left ventricular fractional shortening and ejection fraction) even if increased cardiac mass and pro-hypertrophic markers induction were observed. This is correlated with a protection from TAC-induced cellular Ca2+ signaling alterations (increased SOCE, decreased [Ca2+]i transients amplitude and decay rate, lower SR Ca2+ load and depressed cellular contractility) and SERCA2a downregulation in ventricular cardiomyocytes from C-dnO1 mice, associated with blunted Pyk2 signaling. There was also less fibrosis in heart sections from CdnO1 mice after TAC. Moreover, 3 weeks treatment with JPIII following 5 weeks of TAC confirmed the translational relevance of an Orai1 inhibition strategy during hypertrophic insult. Conclusions: The findings suggest a key role of cardiac Orai1 channels and the potential for Orai1 channel inhibitors as inotropic therapies for maintaining contractility reserve after hypertrophic stress

    Clinicopathological Profile and Surgical Treatment of Abdominal Tuberculosis: A Single Centre Experience in Northwestern Tanzania.

    Get PDF
    Abdominal tuberculosis continues to be a major public health problem worldwide and poses diagnostic and therapeutic challenges to general surgeons practicing in resource-limited countries. This study was conducted to describe the clinicopathological profile and outcome of surgical treatment of abdominal tuberculosis in our setting and compare with what is described in literature. A prospective descriptive study of patients who presented with abdominal tuberculosis was conducted at Bugando Medical Centre (BMC) in northwestern Tanzania from January 2006 to February 2012. Ethical approval to conduct the study was obtained from relevant authorities. Statistical data analysis was performed using SPSS version 17.0. Out of 256 patients enrolled in the study, males outnumbered females. The median age was 28 years (range = 16-68 years). The majority of patients (77.3%) had primary abdominal tuberculosis. A total of 127 (49.6%) patients presented with intestinal obstruction, 106 (41.4%) with peritonitis, 17 (6.6%) with abdominal masses and 6 (2.3%) patients with multiple fistulae in ano. Forty-eight (18.8%) patients were HIV positive. A total of 212 (82.8%) patients underwent surgical treatment for abdominal tuberculosis. Bands /adhesions (58.5%) were the most common operative findings. Ileo-caecal region was the most common bowel involved in 122 (57.5%) patients. Release of adhesions and bands was the most frequent surgical procedure performed in 58.5% of cases. Complication and mortality rates were 29.7% and 18.8% respectively. The overall median length of hospital stay was 32 days and was significantly longer in patients with complications (p < 0.001). Advanced age (age ≥ 65 years), co-morbid illness, late presentation, HIV positivity and CD4+ count < 200 cells/μl were statistically significantly associated with mortality (p < 0.0001). The follow up of patients were generally poor as only 37.5% of patients were available for follow up at twelve months after discharge. Abdominal tuberculosis constitutes a major public health problem in our environment and presents a diagnostic challenge requiring a high index of clinical suspicion. Early diagnosis, early anti-tuberculous therapy and surgical treatment of the associated complications are essential for survival

    Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics

    Get PDF
    Metatranscriptomes generated by pyrosequencing hold significant potential for describing functional processes in complex microbial communities. Meeting this potential requires protocols that maximize mRNA recovery by reducing the relative abundance of ribosomal RNA, as well as systematic comparisons to identify methodological artifacts and test for reproducibility across data sets. Here, we implement a protocol for subtractive hybridization of bacterial rRNA (16S and 23S) that uses sample-specific probes and is applicable across diverse environmental samples. To test this method, rRNA-subtracted and unsubtracted transcriptomes were sequenced (454 FLX technology) from bacterioplankton communities at two depths in the oligotrophic open ocean, yielding 10 data sets representing ~350 Mbp. Subtractive hybridization reduced bacterial rRNA transcript abundance by 40–58%, increasing recovery of non-rRNA sequences up to fourfold (from 12% to 20% of total sequences to 40–49%). In testing this method, we established criteria for detecting sequences replicated artificially via pyrosequencing errors and identified such replicates as a significant component (6–39%) of total pyrosequencing reads. Following replicate removal, statistical comparisons of reference genes (identified via BLASTX to NCBI-nr) between technical replicates and between rRNA-subtracted and unsubtracted samples showed low levels of differential transcript abundance (<0.2% of reference genes). However, gene overlap between data sets was remarkably low, with no two data sets (including duplicate runs from the same pyrosequencing library template) sharing greater than 17% of unique reference genes. These results indicate that pyrosequencing captures a small subset of total mRNA diversity and underscores the importance of reliable rRNA subtraction procedures to enhance sequencing coverage across the functional transcript pool.Agouron InstituteGordon and Betty Moore FoundationUnited States. Dept. of Energy. Office of ScienceNational Science Foundation (U.S.) (NSF Science and Technology Center Award EF0424599

    Body Shaping and Volume Restoration: The Role of Hyaluronic Acid

    Get PDF
    Driven by the rising popularity of minimally invasive techniques, the demand for cosmetic procedures is increasing. Cosmetic body-shaping procedures can be categorized into those that remove tissue and those that add volume. This review focuses on the latter of these categories, particularly on the use of resorbable hyaluronic acid gels specifically developed for minimally invasive volume enhancement. Pilot studies of hyaluronic acid involving its injection to contour various body deformities and its recent use in female breast augmentation are discussed. Injectable hyaluronic acid is effective and well tolerated. It represents an attractive treatment option for volume restoration or augmentation by providing predictable long-lasting results after minimally invasive administration. Alternative treatment options for volume enhancement also are summarized including fat transfer, silicone implants, and the use of injectable nonresorbable products such as silicone, polyalkylimide, and polyacrylamide gels. As patients continue to opt for nonsurgical procedures that offer predictable results, the development of minimally invasive products such as hyaluronic acid is increasingly important
    corecore