721 research outputs found

    Recovering from failure by asking for help

    Get PDF
    Robots inevitably fail, often without the ability to recover autonomously. We demonstrate an approach for enabling a robot to recover from failures by communicating its need for specific help to a human partner using natural language. Our approach automatically detects failures, then generates targeted spoken-language requests for help such as “Please give me the white table leg that is on the black table.” Once the human partner has repaired the failure condition, the system resumes full autonomy. We present a novel inverse semantics algorithm for generating effective help requests. In contrast to forward semantic models that interpret natural language in terms of robot actions and perception, our inverse semantics algorithm generates requests by emulating the human’s ability to interpret a request using the Generalized Grounding Graph (G[superscript 3]) framework. To assess the effectiveness of our approach, we present a corpus-based online evaluation, as well as an end-to-end user study, demonstrating that our approach increases the effectiveness of human interventions compared to static requests for help.Boeing CompanyU.S. Army Research Laboratory (Robotics Collaborative Technology Alliance

    In Vitro and In Vivo Anti-Angiogenic Activities of Panduratin A

    Get PDF
    Targeting angiogenesis has emerged as an attractive and promising strategy in anti-cancer therapeutic development. The present study investigates the anti-angiogenic potential of Panduratin A (PA), a natural chalcone isolated from Boesenbergia rotunda by using both in vitro and in vivo assays.PA exerted selective cytotoxicity on human umbilical vein endothelial cells (HUVECs) with IC(50) value of 6.91 ± 0.85 ”M when compared to human normal fibroblast and normal liver epithelial cells. Assessment of the growth kinetics by cell impedance-based Real-Time Cell Analyzer showed that PA induced both cytotoxic and cytostatic effects on HUVECs, depending on the concentration used. Results also showed that PA suppressed VEGF-induced survival and proliferation of HUVECs. Furthermore, endothelial cell migration, invasion, and morphogenesis or tube formation demonstrated significant time- and dose-dependent inhibition by PA. PA also suppressed matrix metalloproteinase-2 (MMP-2) secretion and attenuated its activation to intermediate and active MMP-2. In addition, PA suppressed F-actin stress fiber formation to prevent migration of the endothelial cells. More importantly, anti-angiogenic potential of PA was also evidenced in two in vivo models. PA inhibited neo-vessels formation in murine Matrigel plugs, and angiogenesis in zebrafish embryos.Taken together, our study demonstrated the distinctive anti-angiogenic properties of PA, both in vitro and in vivo. This report thus reveals another biological activity of PA in addition to its reported anti-inflammatory and anti-cancer activities, suggestive of PA's potential for development as an anti-angiogenic agent for cancer therapy

    PARP inhibitors and the treatment of breast cancer: beyond BRCA1/2?

    Get PDF
    Poly(ADP-ribose) polymerase (PARP) inhibitors have been explored as therapeutic agents for the treatment of hereditary breast and ovarian cancers harboring mutations in BRCA1 or BRCA2. In a new study, Inbar-Rozensal and colleagues show that phenanthridine-derived PARP inhibitors promote cell cycle arrest and cell death in breast cancer cells lacking BRCA1 and BRCA2 mutations and prevent the growth of tumors from xenografts of these cells in immunocompromised mice. These results suggest a potential broader utility of PARP-1 inhibitors in the treatment of breast cancer, although further mechanistic studies are needed

    Management of Lung Nodules and Lung Cancer Screening During the COVID-19 Pandemic: CHEST Expert Panel Report

    Get PDF
    Background: The risks from potential exposure to coronavirus disease 2019 (COVID-19), and resource reallocation that has occurred to combat the pandemic, have altered the balance of benefits and harms that informed current (pre-COVID-19) guideline recommendations for lung cancer screening and lung nodule evaluation. Consensus statements were developed to guide clinicians managing lung cancer screening programs and patients with lung nodules during the COVID-19 pandemic. / Methods: An expert panel of 24 members, including pulmonologists (n = 17), thoracic radiologists (n = 5), and thoracic surgeons (n = 2), was formed. The panel was provided with an overview of current evidence, summarized by recent guidelines related to lung cancer screening and lung nodule evaluation. The panel was convened by video teleconference to discuss and then vote on statements related to 12 common clinical scenarios. A predefined threshold of 70% of panel members voting agree or strongly agree was used to determine if there was a consensus for each statement. Items that may influence decisions were listed as notes to be considered for each scenario. / Results: Twelve statements related to baseline and annual lung cancer screening (n = 2), surveillance of a previously detected lung nodule (n = 5), evaluation of intermediate and high-risk lung nodules (n = 4), and management of clinical stage I non–small-cell lung cancer (n = 1) were developed and modified. All 12 statements were confirmed as consensus statements according to the voting results. The consensus statements provide guidance about situations in which it was believed to be appropriate to delay screening, defer surveillance imaging of lung nodules, and minimize nonurgent interventions during the evaluation of lung nodules and stage I non–small-cell lung cancer. / Conclusions: There was consensus that during the COVID-19 pandemic, it is appropriate to defer enrollment in lung cancer screening and modify the evaluation of lung nodules due to the added risks from potential exposure and the need for resource reallocation. There are multiple local, regional, and patient-related factors that should be considered when applying these statements to individual patient care

    Effective detection of human adenovirus in hawaiian waters using enhanced pcr methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current criteria for recreational water quality evaluation are primarily based on measurements of fecal indicator bacteria growth. However, these criteria often fail to predict the presence of waterborne human pathogenic viruses. To explore the possibility of direct use of human enteric viruses as improved human fecal contamination indicators, human adenovirus (HAdV) was tested as a model in this study.</p> <p>Findings</p> <p>In order to establish a highly sensitive protocol for effective detection of HAdV in aquatic environments, sixteen published PCR primer sets were re-optimized and comparatively evaluated. Primer sets nehex3deg/nehex4deg, ADV-F/ADV-R, and nested PCR primer sets hex1deg/hex2deg and nehex3deg/nehex4deg were identified to be the most sensitive ones, with up to 1,000 fold higher detection sensitivity compared to other published assays. These three PCR protocols were successfully employed to detect HAdV in both treated and untreated urban wastewaters, and also in 6 of 16 recreational water samples collected around the island of Oahu, Hawaii.</p> <p>Conclusions</p> <p>Findings from this study support the possible use of enteric viruses for aquatic environmental monitoring, specifically for the essential routine monitoring of Hawaiian beach waters using the optimized PCR protocol to detect HAdV at certain water sites to ensure a safe use of recreational waters.</p

    Body Mass Index and Employment-Based Health Insurance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obese workers incur greater health care costs than normal weight workers. Possibly viewed by employers as an increased financial risk, they may be at a disadvantage in procuring employment that provides health insurance. This study aims to evaluate the association between body mass index [BMI, weight in kilograms divided by the square of height in meters] of employees and their likelihood of holding jobs that include employment-based health insurance [EBHI].</p> <p>Methods</p> <p>We used the 2004 Household Components of the nationally representative Medical Expenditure Panel Survey. We utilized logistic regression models with provision of EBHI as the dependent variable in this descriptive analysis. The key independent variable was BMI, with adjustments for the domains of demographics, social-economic status, workplace/job characteristics, and health behavior/status. BMI was classified as normal weight (18.5–24.9), overweight (25.0–29.9), or obese (≄ 30.0). There were 11,833 eligible respondents in the analysis.</p> <p>Results</p> <p>Among employed adults, obese workers [adjusted probability (AP) = 0.62, (0.60, 0.65)] (<it>P </it>= 0.005) were more likely to be employed in jobs with EBHI than their normal weight counterparts [AP = 0.57, (0.55, 0.60)]. Overweight workers were also more likely to hold jobs with EBHI than normal weight workers, but the difference did not reach statistical significance [AP = 0.61 (0.58, 0.63)] (<it>P </it>= 0.052). There were no interaction effects between BMI and gender or age.</p> <p>Conclusion</p> <p>In this nationally representative sample, we detected an association between workers' increasing BMI and their likelihood of being employed in positions that include EBHI. These findings suggest that obese workers are more likely to have EBHI than other workers.</p

    Exploring and challenging the network of angiogenesis

    Get PDF
    Angiogenesis is one of the hallmarks of cancer and, as such, one of the alternative general targets for anticancer therapy. Since angiogenesis is a complex process involving a high number of interconnected components, a network approach would be a convenient systemic way to analyse responses to directed drug attacks. Herein we show that, although the angiogenic network is easily broken by short combinations of directed attacks, it still remains essentially functional by keeping the global patterns and local efficiency essentially unaltered after these attacks. This is a clear sign of its high robustness and resilience and stresses the need of directed, combined attacks for an effective blockade of the process. The results of this theoretical study could be relevant for the design of new antiangiogenic therapies and the selection of their targets

    Mapping transcription mechanisms from multimodal genomic data

    Get PDF
    Background Identification of expression quantitative trait loci (eQTLs) is an emerging area in genomic study. The task requires an integrated analysis of genome-wide single nucleotide polymorphism (SNP) data and gene expression data, raising a new computational challenge due to the tremendous size of data. Results We develop a method to identify eQTLs. The method represents eQTLs as information flux between genetic variants and transcripts. We use information theory to simultaneously interrogate SNP and gene expression data, resulting in a Transcriptional Information Map (TIM) which captures the network of transcriptional information that links genetic variations, gene expression and regulatory mechanisms. These maps are able to identify both cis- and trans- regulating eQTLs. The application on a dataset of leukemia patients identifies eQTLs in the regions of the GART, PCP4, DSCAM, and RIPK4 genes that regulate ADAMTS1, a known leukemia correlate. Conclusions The information theory approach presented in this paper is able to infer the dependence networks between SNPs and transcripts, which in turn can identify cis- and trans-eQTLs. The application of our method to the leukemia study explains how genetic variants and gene expression are linked to leukemia.National Human Genome Research Institute (U.S.) (R01HG003354)National Institute of Allergy and Infectious Diseases (U.S.) (U19 AI067854-05)National Heart, Lung, and Blood Institute (grant T32 HL007427-28)National Institutes of Health (U.S.) (grant K99 LM009826

    Functional diversity of mesograzers in an eelgrass-epiphyte system

    Get PDF
    Historically, small invertebrate grazers in marine plant communities have been considered to be a relatively homogeneous group in their impact on ecosystem processes. However, recent studies propose that species composition is an important agent in determining grazer effects. We used four mesocosm experiments to test the biomass-specific and density-dependent effects of common mesograzers in temperate regions (Littorina littorea, Rissoa membranacea, Idotea baltica and Gammarus oceanicus) on epiphyte and eelgrass biomass and productivity. Mesograzer species identity strongly influenced epiphyte accumulation and eelgrass growth, where Rissoa was the most efficient mesograzer (per biomass) and Gammarus had the weakest impact. Density-dependent effects varied considerably among species. Both gastropod species reduced epiphyte accumulation in direct proportion to their density, and Littorina had the strongest negative effect on epiphyte biomass. The impact of Idotea seemed to level off to a threshold value and Gammarus had no density-dependent effect on epiphyte accumulation at all. Rissoa and Idotea increased eelgrass productivity in accordance with their effect on epiphyte accumulation, whereas Littorina showed a less positive effect than could be expected by its strong impact on epiphyte biomass. Gammarus had no significant impact on eelgrass growth. Our results show that the different functional traits of superficially similar mesograzers can have important consequences for ecosystem processes in macrophyte systems
    • 

    corecore