12 research outputs found

    Probabilistic Inference for Nucleosome Positioning with MNase-Based or Sonicated Short-Read Data

    Get PDF
    We describe a model-based method, PING, for predicting nucleosome positions in MNase-Seq and MNase- or sonicated-ChIP-Seq data. PING compares favorably to NPS and TemplateFilter in scalability, accuracy and robustness to low read density. To demonstrate that PING predictions from widely available sonicated data can have sufficient spatial resolution to be to be useful for biological inference, we use Illumina H3K4me1 ChIP-seq data to detect changes in nucleosome positioning around transcription factor binding sites due to tamoxifen stimulation, to discriminate functional and non-functional transcription factor binding sites more effectively than with enrichment profiles, and to confirm that the pioneer transcription factor Foxa2 associates with the accessible major groove of nucleosomal DNA

    Structural constraints revealed in consistent nucleosome positions in the genome of S. cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in the field of high-throughput genomics have rendered possible the performance of genome-scale studies to define the nucleosomal landscapes of eukaryote genomes. Such analyses are aimed towards providing a better understanding of the process of nucleosome positioning, for which several models have been suggested. Nevertheless, questions regarding the sequence constraints of nucleosomal DNA and how they may have been shaped through evolution remain open. In this paper, we analyze in detail different experimental nucleosome datasets with the aim of providing a hypothesis for the emergence of nucleosome-forming sequences.</p> <p>Results</p> <p>We compared the complete sets of nucleosome positions for the budding yeast (<it>Saccharomyces cerevisiae</it>) as defined in the output of two independent experiments with the use of two different experimental techniques. We found that < 10% of the experimentally defined nucleosome positions were consistently positioned in both datasets. This subset of well-positioned nucleosomes, when compared with the bulk, was shown to have particular properties at both sequence and structural levels. Consistently positioned nucleosomes were also shown to occur preferentially in pairs of dinucleosomes, and to be surprisingly less conserved compared with their adjacent nucleosome-free linkers.</p> <p>Conclusion</p> <p>Our findings may be combined into a hypothesis for the emergence of a weak nucleosome-positioning code. According to this hypothesis, consistent nucleosomes may be partly guided by nearby nucleosome-free regions through statistical positioning. Once established, a set of well-positioned consistent nucleosomes may impose secondary constraints that further shape the structure of the underlying DNA. We were able to capture these constraints through the application of a recently introduced structural property that is related to the symmetry of DNA curvature. Furthermore, we found that both consistently positioned nucleosomes and their adjacent nucleosome-free regions show an increased tendency towards conservation of this structural feature.</p

    The interaction landscape between transcription factors and the nucleosome

    No full text
    Nucleosomes cover most of the genome and are thought to be displaced by transcription factors (TFs) in regions that direct gene expression. However, the modes of interaction between TFs and nucleosomal DNA remain largely unknown. Here, we have systematically explored interactions between the nucleosome and 220 TFs representing diverse structural families. Consistently with earlier observations, we find that the majority of the studied TFs have less access to nucleosomal DNA than to free DNA. The motifs recovered from TFs bound to nucleosomal and free DNA are generally similar; however, steric hindrance and scaffolding by the nucleosome result in specific positioning and orientation of the motifs. Many TFs preferentially bind close to the end of nucleosomal DNA, or to periodic positions at its solvent-exposed side. TFs often also bind to nucleosomal DNA in a particular orientation. Some TFs specifically interact with DNA located at the dyad position where only one DNA gyre is wound, whereas other TFs prefer sites spanning two DNA gyres and bind specifically to each of them. Our work reveals striking differences in TF binding to free and nucleosomal DNA, and uncovers a rich interaction landscape between TFs and the nucleosome
    corecore