29 research outputs found

    Ecological succession of a Jurassic shallow-water ichthyosaur fall.

    Get PDF
    After the discovery of whale fall communities in modern oceans, it has been hypothesized that during the Mesozoic the carcasses of marine reptiles created similar habitats supporting long-lived and specialized animal communities. Here, we report a fully documented ichthyosaur fall community, from a Late Jurassic shelf setting, and reconstruct the ecological succession of its micro- and macrofauna. The early 'mobile-scavenger' and 'enrichment-opportunist' stages were not succeeded by a 'sulphophilic stage' characterized by chemosynthetic molluscs, but instead the bones were colonized by microbial mats that attracted echinoids and other mat-grazing invertebrates. Abundant cemented suspension feeders indicate a well-developed 'reef stage' with prolonged exposure and colonization of the bones prior to final burial, unlike in modern whale falls where organisms such as the ubiquitous bone-eating worm Osedax rapidly destroy the skeleton. Shallow-water ichthyosaur falls thus fulfilled similar ecological roles to shallow whale falls, and did not support specialized chemosynthetic communities

    Epilepsy in Dcx Knockout Mice Associated with Discrete Lamination Defects and Enhanced Excitability in the Hippocampus

    Get PDF
    Patients with Doublecortin (DCX) mutations have severe cortical malformations associated with mental retardation and epilepsy. Dcx knockout (KO) mice show no major isocortical abnormalities, but have discrete hippocampal defects. We questioned the functional consequences of these defects and report here that Dcx KO mice are hyperactive and exhibit spontaneous convulsive seizures. Changes in neuropeptide Y and calbindin expression, consistent with seizure occurrence, were detected in a large proportion of KO animals, and convulsants, including kainate and pentylenetetrazole, also induced seizures more readily in KO mice. We show that the dysplastic CA3 region in KO hippocampal slices generates sharp wave-like activities and possesses a lower threshold for epileptiform events. Video-EEG monitoring also demonstrated that spontaneous seizures were initiated in the hippocampus. Similarly, seizures in human patients mutated for DCX can show a primary involvement of the temporal lobe. In conclusion, seizures in Dcx KO mice are likely to be due to abnormal synaptic transmission involving heterotopic cells in the hippocampus and these mice may therefore provide a useful model to further study how lamination defects underlie the genesis of epileptiform activities

    Packages of Care for Schizophrenia in Low- and Middle-Income Countries

    Get PDF
    In the third in a series of six articles on packages of care for mental disorders in low- and middle-income countries, Jair Mari and colleagues discuss the treatment of schizophrenia

    Rethinking alcohol interventions in health care: a thematic meeting of the International Network on Brief Interventions for Alcohol & Other Drugs (INEBRIA)

    Get PDF

    Achieving assessor accuracy on the International Standards for Neurological Classification of Spinal Cord Injury

    No full text
    Study design: A retrospective audit of assessor accuracy using the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) in three multicentre randomised controlled trials (SCIPA: Spinal Cord Injury and Physical Activity) spanning 2010-2014 with standards revised in 2011. Objectives: To investigate assessor accuracy of neurological classification after spinal cord injury. Setting: Australia and New Zealand. Methods: ISNCSCI examinations were undertaken by trained clinicians prior to randomisation. Data were recorded manually and ISNCSCI worksheets circulated to panels, consensus reached and worksheets corrected. An audit team used a 2014 computerised ISNCSCI algorithm to check manual worksheets. A second audit team assessed whether the 2014 computerised algorithm accurately reflected pre- and post-2011 ISNCSCI standards. Results: Of the 208 ISNCSCI worksheets, 24 were excluded. Of the remaining 184 worksheets, 47 (25.5%) were consistent with the 2014 computerised algorithm and 137 (74.5%) contained one or more errors. Errors were in motor (30.1%) or sensory (12.4%) levels, zone of partial preservation (24.0%), motor/sensory scoring (21.5%), ASIA Impairment Scale (AIS, 8.3%) and complete/incomplete classification (0.8%). Other difficulties included classification when anal contraction/sensation was omitted, incorrect neurological levels and violation of the 'motor follows sensory rule in non-testable myotomes' (7.4%). Panel errors comprised corrections that were incorrect or missed or incorrect changes to correct worksheets. Conclusion: Given inaccuracies in the manual ISNCSCI worksheets in this long-term clinical trial setting, continued training and a computerised algorithm are essential to ensure accurate scoring, scaling and classification of the ISNCSCI and confidence in clinical trials.AJ Armstrong, JM Clark, DT Ho, CJ Payne, S Nolan, LM Goodes, LA Harvey, R Marshall, MP Galea, SA Dunlop, on behalf of the Clinical Trial Collaborator
    corecore