29 research outputs found

    Climatic risks and impacts in South Asia: extremes of water scarcity and excess

    Get PDF
    This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change

    Dependence of Simulation of Boreal Summer Tropical Intraseasonal Oscillations on the Simulation of Seasonal Mean

    No full text
    The link between realism in simulation of the seasonal mean precipitation and summer tropical intraseasonal oscillations and their dependence on cumulus parameterization schemes is investigated using the Florida State University Global Spectral Model (FSUGSM). Forty-member model ensemble simulations of the northern summer season are generated for three different cumulus parameterization schemes [namely, Arakawa–Schubert (Naval Research Laboratory; NRL), Zhang and McFarlane (National Center for Atmospheric Research; NCAR), and Emanuel (Massachusetts Institute of Technology; MIT)]. The MIT scheme simulates the regional pattern of seasonal mean precipitation over the Indian monsoon region well but has large systematic bias in simulating the precipitation over the western Pacific and the Maritime Continent. Although the simulation of details of regional distribution of precipitation over the Indian monsoon region by the NRL and NCAR schemes is not accurate, they simulate the spatial pattern of precipitation over the tropical Indo–Pacific domain closer to observation. The NRL scheme seems to captures the observed northward and eastward propagation of intraseasonal precipitation anomalies realistically. However, the simulations of the NCAR and MIT schemes are dominated by a westward propagating component. The westward propagating mode seen in the model as well as observations is indicated to be an equatorial Rossby wave modified by the northern summer mean flow. An examination of the relationship between simulation of the model climatology and eastward propagating character of monsoon intraseasonal oscillations (ISOs) in a limited sample shows that the scheme that simulates better seasonal mean pattern of rainfall over the tropical Indo–Pacific domain also simulates better intraseasonal variance and more realistic eastward propagation of monsoon ISOs. Among the parameters known to be important for meridional propagation of the summer monsoon ISOs, the meridional gradient of mean humidity in the lower atmosphere seems to be crucial in determining the northward propagation in the equatorial Indian Ocean (between 10°S and 10°N). For better prediction of the seasonal mean Indian monsoon, therefore, the model climatology should have minimum bias not only over the Indian monsoon region but also over the entire Indo–Pacific basin

    Influence of Indian ocean dipole on poleward propagation of boreal summer intraseasonal oscillations

    No full text
    The influence of the Indian Ocean dipole (IOD) on the poleward propagation of boreal summer intraseasonal oscillations (BSISOs) is examined using observed datasets. This study finds that coherent (incoherent) poleward propagation of precipitation anomalies from 5°S to 25°N are observed during negative (positive) IOD years. Disorganized poleward propagation of BSISO in the south equatorial Indian Ocean is observed during positive IOD years. The rationale behind such an anomaly in the poleward propagation of BSISO in contrasting IOD years is identified based on the theory of northward-propagating BSISO, which suggests the influential role of air–sea interaction on the genesis and propagation of BSISO. It is found that the mean structure of moisture convergence and meridional specific humidity distribution undergoes radical changes in contrasting IOD years, which in turn influences the meridional propagation of BSISO. This study assumes significance, considering the critical role of BSISO in modulating the seasonal mean summer monsoon rainfall

    Influence of Indian Ocean Dipole on boreal summer intraseasonal oscillations in a coupled general circulation model

    No full text
    The role of Indian Ocean Dipole (IOD) on poleward propagation of boreal summer intraseasonal oscillations (BSISO) is examined using long simulation of a coupled ocean-atmosphere general circulation model. The model (SINTEX-Fl) simulates the salient features of BSISO realistically. It is found that coherent (incoherent) poleward propagation of precipitation anomalies from 5°S to 25°N are observed during negative (positive) IOD years. The probable mechanisms behind such an anomaly in poleward propagation of BSISO in contrasting IOD years are identified. We find that the mean structure of meridional specific humidity distribution undergoes cardinal changes in contrasting IOD years, which in turn influences the meridional propagation of BSISO. Enhanced (decreased) air-sea interaction in negative (positive) IOD years also supports coherent (incoherent) poleward propagation of BSISO anomalies. This study has important implications, considering the critical role of BSISO in modulating the seasonal mean summer monsoon rainfall

    On the relationship between Indian summer monsoon withdrawal and Indo-Pacific SST anomalies before and after 1976/1977 climate shift

    No full text
    A clear shift in the withdrawal dates of the Indian Summer Monsoon is observed in the long term time series of rainfall data. Prior (posterior) to the 1976/1977 climate shift most of the withdrawal dates are associated with a late (an early) withdrawal. As a result, the length of the rainy season (LRS) over the Indian land mass has also undergone similar changes (i. e., longer (shorter) LRS prior (posterior) to the climate shift). In this study, probable reasons for this significant shift in withdrawal dates and the LRS are investigated using reanalysis/observed datasets and also with the help of an atmospheric general circulation model. Reanalysis/observational datasets indicate that prior to the climate shift the sea surface temperature (SST) anomalies in the eastern equatorial Pacific Ocean and the Arabian Sea exerted a strong influence on both the withdrawal and the LRS. After the climate shift, the influence of the eastern equatorial Pacific Ocean SST has decreased and surprisingly, the influence of the Arabian Sea SST is almost non-existent. On the other hand, the influence of the southeastern equatorial Indian Ocean has increased significantly. It is observed that the upper tropospheric temperature gradient over the dominant monsoon region has decreased and the relative influence of the Indian Ocean SST variability on the withdrawal of the Indian Summer Monsoon has increased in the post climate shift period. Sensitivity experiments with the contrasting SST patterns on withdrawal dates and the LRS in the pre- and post- climate shift scenarios, confirm the observational evidences presented above

    Intensification of upwelling along Oman coast in a warming scenario

    No full text
    The oceanic impact of poleward shift in monsoon low-level jet (MLLJ) is examined using a Regional Ocean Modeling System (ROMS). Two sets of downscaling experiments were conducted using ROMS with boundary and initial conditions from six CMIP5 models. While outputs from the historical run (1981–2000) acts as forcing for the first, the second uses RCP8.5 (2080–2099). By comparing the outputs, it is found that Oman coast will experience an increase in upwelling in tune with MLLJ shift. Consistent with the changes in upwelling and zonal Ekman transport, temperature, salinity, and productivity show significant changes near the Oman coast. The changes in MLLJ causes the coastal wind to angle against the Oman coast in such a fashion that the net upwelling increases in the next century and so does the marine productivity. This study contrasts the general view of weakening of upwelling along the Arabian coasts due to the weakening of monsoon winds
    corecore