2,606 research outputs found

    Terorisme dan Anak Muda: Studi tentang Rekrutmen Jejaring Terorisme dalam Perspektif Eksistensialisme Jean Paul Sartre

    Get PDF
    This article explores the changes that occur in terrorism networks, especially related to changes in recruitment targets. These changes are observed in the perspective of Jean Paul Sartre's existentialism. This article aims to find out the changes that occur in the terrorism network in relation to the methods and targets of recruitment and how the changes are interpreted in the context of Jean Paul Sartre's existentialism. There are four aspects of changes that occur in terrorism, namely organization, means of propaganda, targets of recruitment and targets of action. The younger generation involved in terrorist networks can be seen as an attempt to realize a full self-existence as a result of the denial or denial of the existence of others.AbstrakArtikel ini mengeksplorasi perubahan-perubahan yang terjadi di dalam jaringan terorisme, terutama terkait dengan perubahan sasaran rekrutmen. Perubahan-perubahan ini dilihat dalam perspektif eksistensialisme Jean Paul Sartre. Tujuan dari artikel ini adalah untuk mengetahui perubahan-perubahan yang terjadi di dalam jaringan terorisme dalam kaitannya dengan metode dan sasaran rekrutmen serta bagaimana perubahan-perubahan ini ditafsirkan dalam konteks eksistensialisme Jean Paul Sartre. Ada empat aspek perubahan yang terjadi di dalam terorisme, yaitu organisasi, sarana propaganda, sasaran perekrutan dan sasaran aksi. Generasi muda yang terlibat dalam jaringan terorisme dapat dipandang sebagai suatu upaya untuk mewujudkan eksistensi diri yang sepenuhnya sebagai hasil dari penegasian atau penyangkalan atas eksistensi yang lain

    Process model comparison based on cophenetic distance

    Get PDF
    The automated comparison of process models has received increasing attention in the last decade, due to the growing existence of process models and repositories, and the consequent need to assess similarities between the underlying processes. Current techniques for process model comparison are either structural (based on graph edit distances), or behavioural (through activity profiles or the analysis of the execution semantics). Accordingly, there is a gap between the quality of the information provided by these two families, i.e., structural techniques may be fast but inaccurate, whilst behavioural are accurate but complex. In this paper we present a novel technique, that is based on a well-known technique to compare labeled trees through the notion of Cophenetic distance. The technique lays between the two families of methods for comparing a process model: it has an structural nature, but can provide accurate information on the differences/similarities of two process models. The experimental evaluation on various benchmarks sets are reported, that position the proposed technique as a valuable tool for process model comparison.Peer ReviewedPostprint (author's final draft

    Controlling a cargo ship without human experience based on deep Q-network

    Get PDF
    Human experience is regarded as an indispensable part of artificial intelligence in the process of controlling or decision making for autonomous cargo ships. In this paper, a novel Deep Q-Network-based (DQN) approach is proposed, which performs satisfactorily in controlling a cargo ship automatically without any human experience. At the very beginning, we use the model of KRISO Very Large Crude Carrier (KVLCC2) to describe a cargo ship. To manipulate this ship has to conquer great inertia and relatively insufficient driving force. Subsequently, customary waterways, regulations, conventions are described with Artificial Potential Field and value-functions in DQN. Based on this, the artificial intelligence of planning and controlling a cargo ship can be obtained by undertaking sufficient training, which can control the ship directly, while avoiding collisions, keeping its position in the middle of the route as much as possible. In simulation experiments, it is demonstrated that such an approach performs better than manual works and other traditional methods in most conditions, which makes the proposed method a promising solution in improving the autonomy level of cargo ships

    Smart meter security: Vulnerabilities, threat impacts, and countermeasures

    Get PDF
    © Springer Nature Switzerland AG 2019. Advanced Metering Infrastructure (AMI) is the aggregation of smart meters, communications networks, and data management systems that are tailored to meet the efficient integration of renewable energy resources. The more complex features and soundless functionalities the AMI is enhanced with, the more cyber security concerns are raised and must be taken into consideration. It is imperative to assure consumer’s privacy and security to guarantee the proliferation of rolling out smart metering infrastructure. This research paper analyzes AMI from security perspectives; it discusses the possible vulnerabilities associated with different attack surfaces in the smart meter, their security and threat implications, and finally it recommends proper security controls and countermeasures. The research findings draw the foundation upon which robust security by design approach is geared for the deployment of the AMI in the future

    Manipulating infrared photons using plasmons in transparent graphene superlattices

    Full text link
    Superlattices are artificial periodic nanostructures which can control the flow of electrons. Their operation typically relies on the periodic modulation of the electric potential in the direction of electron wave propagation. Here we demonstrate transparent graphene superlattices which can manipulate infrared photons utilizing the collective oscillations of carriers, i.e., plasmons of the ensemble of multiple graphene layers. The superlattice is formed by depositing alternating wafer-scale graphene sheets and thin insulating layers, followed by patterning them all together into 3-dimensional photonic-crystal-like structures. We demonstrate experimentally that the collective oscillation of Dirac fermions in such graphene superlattices is unambiguously nonclassical: compared to doping single layer graphene, distributing carriers into multiple graphene layers strongly enhances the plasmonic resonance frequency and magnitude, which is fundamentally different from that in a conventional semiconductor superlattice. This property allows us to construct widely tunable far-infrared notch filters with 8.2 dB rejection ratio and terahertz linear polarizers with 9.5 dB extinction ratio, using a superlattice with merely five graphene atomic layers. Moreover, an unpatterned superlattice shields up to 97.5% of the electromagnetic radiations below 1.2 terahertz. This demonstration also opens an avenue for the realization of other transparent mid- and far-infrared photonic devices such as detectors, modulators, and 3-dimensional meta-material systems.Comment: under revie

    Dual-gated bilayer graphene hot electron bolometer

    Full text link
    Detection of infrared light is central to diverse applications in security, medicine, astronomy, materials science, and biology. Often different materials and detection mechanisms are employed to optimize performance in different spectral ranges. Graphene is a unique material with strong, nearly frequency-independent light-matter interaction from far infrared to ultraviolet, with potential for broadband photonics applications. Moreover, graphene's small electron-phonon coupling suggests that hot-electron effects may be exploited at relatively high temperatures for fast and highly sensitive detectors in which light energy heats only the small-specific-heat electronic system. Here we demonstrate such a hot-electron bolometer using bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The measured large electron-phonon heat resistance is in good agreement with theoretical estimates in magnitude and temperature dependence, and enables our graphene bolometer operating at a temperature of 5 K to have a low noise equivalent power (33 fW/Hz1/2). We employ a pump-probe technique to directly measure the intrinsic speed of our device, >1 GHz at 10 K.Comment: 5 figure

    Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    Get PDF
    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs

    Siglecg Limits the Size of B1a B Cell Lineage by Down-Regulating NFκB Activation

    Get PDF
    BACKGROUND: B1 B cells are believed to be a unique lineage with a distinct developmental pathway, function and activation requirement. How this lineage is genetically determined remained largely obscure. METHODS AND PRINCIPAL FINDINGS: Using the Siglecg-deficient mice with a knockin of green-fluorescent protein encoding sequence, we show here that, although the Siglecg gene is broadly expressed at high levels in all stages and/or lineages of B cells tested and at lower levels in other lineages, its deletion selectively expanded the B1a B cell lineages, including the frequency of the B1 cell progenitor in the bone marrow and the number of B1a cells in the peritoneal cavity, by postnatal expansion. The expansion of B1a B cells in the peritoneal correlated with enhanced activation of NFkappaB and was ablated by an IKK inhibitor. CONCLUSION AND SIGNIFICANCE: Our data revealed a critical role for Siglec G-NFkappaB pathway in regulating B1a B cell lineage. These data lead to a novel model of B1a lineage development that explains a large array of genetic data in this field

    Clip-level feature aggregation : a key factor for video-based person re-identification

    Get PDF
    In the task of video-based person re-identification, features of persons in the query and gallery sets are compared to search the best match. Generally, most existing methods aggregate the frame-level features together using a temporal method to generate the clip-level fea- tures, instead of the sequence-level representations. In this paper, we propose a new method that aggregates the clip-level features to obtain the sequence-level representations of persons, which consists of two parts, i.e., Average Aggregation Strategy (AAS) and Raw Feature Utilization (RFU). AAS makes use of all frames in a video sequence to generate a better representation of a person, while RFU investigates how batch normalization operation influences feature representations in person re- identification. The experimental results demonstrate that our method can boost the performance of existing models for better accuracy. In particular, we achieve 87.7% rank-1 and 82.3% mAP on MARS dataset without any post-processing procedure, which outperforms the existing state-of-the-art

    Local Optical Probe of Motion and Stress in a multilayer graphene NEMS

    Full text link
    Nanoelectromechanical systems (NEMSs) are emerging nanoscale elements at the crossroads between mechanics, optics and electronics, with significant potential for actuation and sensing applications. The reduction of dimensions compared to their micronic counterparts brings new effects including sensitivity to very low mass, resonant frequencies in the radiofrequency range, mechanical non-linearities and observation of quantum mechanical effects. An important issue of NEMS is the understanding of fundamental physical properties conditioning dissipation mechanisms, known to limit mechanical quality factors and to induce aging due to material degradation. There is a need for detection methods tailored for these systems which allow probing motion and stress at the nanometer scale. Here, we show a non-invasive local optical probe for the quantitative measurement of motion and stress within a multilayer graphene NEMS provided by a combination of Fizeau interferences, Raman spectroscopy and electrostatically actuated mirror. Interferometry provides a calibrated measurement of the motion, resulting from an actuation ranging from a quasi-static load up to the mechanical resonance while Raman spectroscopy allows a purely spectral detection of mechanical resonance at the nanoscale. Such spectroscopic detection reveals the coupling between a strained nano-resonator and the energy of an inelastically scattered photon, and thus offers a new approach for optomechanics
    • …
    corecore