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Abstract. Human experience is regarded as an indispensable part of artificial intelligence in the process of controlling or decision 
making for autonomous cargo ships. In this paper, a novel Deep Q-Network-based (DQN) approach is proposed, which performs 
satisfactorily in controlling a cargo ship automatically without any human experience. At the very beginning, we use the model 
of KRISO Very Large Crude Carrier (KVLCC2) to describe a cargo ship. To manipulate this ship has to conquer great inertia 
and relatively insufficient driving force. Subsequently, customary waterways, regulations, conventions are described with Arti-
ficial Potential Field and value-functions in DQN. Based on this, the artificial intelligence of planning and controlling a cargo 
ship can be obtained by undertaking sufficient training, which can control the ship directly, while avoiding collisions, keeping 
its position in the middle of the route as much as possible. In simulation experiments, it is demonstrated that such an approach 
performs better than manual works and other traditional methods in most conditions, which makes the proposed method a prom-
ising solution in improving the autonomy level of cargo ships.  
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1.  Introduction 

Unmanned Surface Vessels (USVs), including au-
tonomous boats and ships, have become hot spots of 
research in recent years. Especially for autonomous 
cargo ships, they are considered as a promising area in 
the shipping industry. Many researchers believe that 
developing autonomous cargo or general-purpose 
ships might be a wise way to address the problems of 
manpower shortage, safety, emission and pollution [1]. 
However, the progress of autonomous ships is slightly 
slower than that of autonomous boast, unmanned au-
tomobiles and aircrafts. Cargo ships, or general-pur-
pose ships are quite special machineries, which must 
conquer huge inertia, great uncertainties of perception, 
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recognition and manipulation in the navigation. Even 
for a human operator, such a job requires substantial 
knowledge and experience which could be obtained 
over years. Therefore, a practical artificial intelligence 
used for controlling a cargo ship for general purposes 
has not been invented. In general, the autonomy of a 
cargo ship is widely acknowledged to be consisting of 
several sequential processes or components, which in-
cludes sensing, recognizing, decision making and con-
trolling [2]. Hence, many researchers are dedicated to 
imitating such components with various approaches. 
Furthermore, decision making is operating on two lev-
els that include a long-distance planning and a short-
distance, or short-term decision making. The short-



term decision making in this area is also known as col-
lision avoidance or path planning.  

In the field of autonomous ships, the path planning 
and the motion controlling are usually treated as sepa-
rate issues. This inevitably brings about that the 
planned paths often cannot be completed by cargo 
ships due to their characteristics in manoeuvrability. 
For example, the paths planned by A* and Rapid Ran-
dom Trees (RRT) generally contain many continuous 
turns, which do not comply with the motion character-
istics of ships. Furthermore, the path planning of a 
cargo ship has to take navigational knowledge into 
considerations, which brings many associated difficul-
ties. In principle, navigational knowledge includes 
regulations, customary routes, and human experience, 
which are generally qualitative descriptions or guid-
ance. To translate this knowledge into specific paths 
in changeable waterways is a challenge.  

With the development of reinforcement learning 
(RL), a novel perspective has been put forward to ad-
dress this problem. From the view of cognitive and 
learning science, all the creatures have the capability 
to navigate in complicated and changing environments. 
It is worth noting that they proceed with path planning 
and self-controlling simultaneously. Similarly, a cap-
tain or a helmsman of a ship might only have a rough 
plan of what to do under specific circumstances in ad-
vance, and he or she does not plan a precise path or a 
trajectory to follow. In fact, in the short-distance ma-
nipulation, the sensing, decision making, and control-
ling are always accomplished at the same time. The 
truth is that the decisions on paths are changing all the 
time. 

Under this perspective, it is not unreasonable to use 
the artificial Neural Networks and RL-based algo-
rithm to imitate manual processes in navigation, which 
is capable of regarding the short-range path planning 
and the motion controlling as a merged issue.  

The traditional RL-based algorithms can only be 
used in solving simple problems such grid-like games. 
The available status and the candidate actions of an 
agent has to be discrete and limited, otherwise the 
training time will be infinite. In recent years, deep 
learning technologies has been introduced into RL-
based algorithms with the feature of being capable of 
fast learning and environment cognizing. After a short 
period of self-study and training, the DQN-based al-
gorithm achieved a high level of intelligence across a 
set of 49 classic Atari 2600 games. In these challeng-
ing tasks, they used the same algorithm, network ar-
chitecture and hyperparameters [3]. In 2016, Deep-
Mind developed AlphaGo Zero based on the Monte 

Carlo Decision tree search, which completely accom-
plished the training without any human experience and 
used a strategy of self-play to defeat a human master 
player in the Go game [4]. It can be seen that several 
relevant algorithms have proved that human experi-
ence might not be indispensable when the environ-
ments can be described appropriately, and the corre-
sponding RL-based algorithms are designed properly. 

Inspired by this, a novel short-term path planning 
and motion controlling approach based on DQN is 
proposed for autonomous cargo ships in this paper. 
The navigation environment is analysed with a Con-
ventional Neural Network (CNN), and a modular type 
mathematical model (the so-called MMG model) is 
used to describe motion constraints of ships, the cor-
responding waterways and conventions are modelled 
based on an Artificial Potential Field (APF) model. 
The paper is organised as follows. Relevant references 
are reviewed in Section 2. A novel DQN-based ap-
proach is proposed in Section 3. By establishing a sim-
ulation world as a case study, the approach is validated 
in Section 4. Section 5 concludes this paper and pro-
vides directions for future research. 

2. Literature review 

The autonomy of general-purpose ships is inspired 
by the USV. The Springer USV and other projects 
started by colleges are the pioneers. The development 
of the Springer USV had originated from the Marine 
& Industrial Dynamic Analysis Research Group 
(MIDAS) at the University of Plymouth. The Springer 
had been developed for conducting environmental and 
hydrographic surveys in coastal waters [5]. Besides, 
the DELFIM is another USV for automatic marine 
data acquisition and served as an acoustic relay be-
tween a submerged craft and a supporting vessel, de-
signed by Instituto Superior Técnico (IST), Lisbon [6]. 
In these projects, the navigation and control of the 
ship's path were studied as two subsystems. Fossen [7] 
built a basic framework for USVs and unmanned ships, 
which was divided into four control subsystems: en-
gine system, communication system, sensors and nav-
igation, guidance and control (NGC) system [8-10].  

2.1. Path planning of autonomous ships 

Generally, path planning is considered to be the 
most important function of USV. In relevant re-
searches, the A* algorithm is widely used, which is 



designed to find a short path between start and desti-
nation based on cost functions within a grid map [11]. 
For instance, Casalinot et al. [12] addressed an obsta-
cle avoidance problem and computed a real-time path 
in harbour field based on the A*. Campbell and Naeem 
[13] presented a modified A* algorithm for path plan-
ning considering the International Regulations for Pre-
venting Collisions at Sea (COLREGs). Generally, 
USVs always navigate in a mapping environment with 
obstacles information as prior knowledge when using 
A*-based algorithms. 

However, cargo ships always have to face dynamic 
obstacles and various navigation regulations. Hence, 
the conventional form of A*-based algorithms might 
not be applicable. APF and other methods are more 
appropriate. Ma and Chen [14] adopted APF to de-
scribe the collision potentials caused by buoys, piers 
and encountered vessels and then estimated the colli-
sion probabilities. Wang et al. [15] suggested a multi-
ship collision avoidance and path planning solution 
based on APF, which analysed give-way and stand-on 
ships situation. This method improved the ship do-
main model by taking speed and course into consider-
ation, which makes it more accurate. Lazarowska [16] 
introduced an APF-based path planning method for 
ships at open sea. However, the APF-based algorithms 
must face the problem of local minima [17]. Line-of-
Sight (LOS) guidance is another commonly used ap-
proach in path planning, which is considered as the 
most popular guidance law in use for surface vessels. 
Zereik et al. [18] described a navigation guidance and 
control system based on LOS and applied it to un-
manned marine vehicles considering only stationary 
obstacles. Moe and Pettersen [19] extended set-based 
guidance theory to an underactuated USV and pre-
sented a switched guidance and control system. This 
guidance law can ensure the safety by creating a safe 
radius around moving obstacles and complying with 
COLREGs. Liu et al. [20] made use of the fast march-
ing method (FMM) algorithm to search for an optimal 
collision-free trajectory and a new waypoint-generator 
based on the LOS to facilitate the trajectory tracking 
of the Springer USV, which showed that it can be 
seamlessly integrated with the Springer's exiting auto-
pilot to achieve full autonomy.  

2.2. Motion controlling of autonomous ships 

In most researches, after path planning, the follow-
ing issue is to maintain the velocity and to control the 
ship on the planned path, namely motion controlling. 

The corresponding work can be traced back to an au-
topilot which appeared in the 1920s [21]. The autopi-
lot is a kind of facility to keep the heading on a setting 
value by directly controlling the rudder, which is still 
an essential means of assistant driving. The typical re-
search is listed as follows. Miao et al. [22] designed an 
adaptive PID algorithm for the heading control system 
of USV. Liu et al. [23] proposed a model predictive 
control (MPC) approach based on adaptive LOS guid-
ance for path following control of autonomous surface 
vehicles and verified by simulation experiments with-
out disturbances and with disturbances. Sharma and 
Sutton [24] developed a modified nonlinear MPC al-
gorithm based on a genetic algorithm for the USV. 
Such researches are used to improve the adaptive ca-
pacity of different controllers in changeable environ-
ments, which can be regarded as improvements of au-
topilot. Although relevant research has made much 
progress in these years, an autopilot that is capable of 
replacing a helmsman has not been invented yet. The 
conventional autopilots are designed to steer the wheel 
and keep the course to reduce human labour while 
more advanced skills of a helmsman like path plan-
ning and decision making are not fulfilled yet. As dis-
cussed previously, the helmsman must make rapid and 
continuous decisions in ever-changing waterways. To 
divide the controlling behaviours into two parts, path 
planning and motion controlling might be open to 
question. 

2.3. The application of RL in autonomous ships 

RL takes path planning and motion controlling as a 
whole system and trains such a system by interacting 
with environments, which provides a new idea for 
navigating autonomously and adaptively in an un-
known environment. RL provides agents with the ca-
pability of interacting with the environment in real-
time and tries constantly to obtain an appropriate strat-
egy. The outputs of the agents are actions of rudder or 
engine, which can be used to make continuous deci-
sions for smart ships in real situation. Blekas and Vla-
chos [25] investigated RL for the path planning of an 
autonomous triangular marine platform in unknown 
environments under various environmental disturb-
ances. They also simulated system and sensor failures, 
and the results showed that the algorithm performed 
well, proving its robustness. Considering the dynamic 
characteristics of a vehicle and disturbance effects in 
ocean environments, Yoo and Kim [26] presented an 
RL based algorithm generates a near-optimal path and 
compared it with A*, RRT and dynamic programming 



with the same simulation setting. The results proved 
that the path obtained by the RL based method is more 
satisfied, which has been further validated by a field 
experiment in the western sea of Korea. Chen et al. 
[27] proposed a path planning and motion control ap-
proach based on Q-learning, and compared this ap-
proach with A* and RRT methods. The RL algorithm 
has achieved promising results in autonomous driving, 
but the huge magnitude of the state space and the ac-
tion space is still a problem for a ship.  

To address the similar problem, DeepMind put for-
ward DQN [28], which attracted widespread attention. 
DQN applied the achievements of cognitive neurosci-
ence to the training of deep neural networks and 
solved the problem of state space explosion using ex-
perience replay and a separate target network. In 2018, 
a British company, Wayve [29] realized that a car 
without any prior knowledge can learn lane tracking 
skills in only 30 minutes using a model-free deep RL 
algorithm. DeepMind [30] presented a dual-pathway 
agent architecture, which can learn to navigate in a 
city-scale, real environment using visual navigation 
scheme. This method uses end-to-end RL for training 
and Google Street View for its photographic content. 
NVIDIA [31] proposed an end-to-end approach that is 
capable of steering a car without human knowledge. 
The successful application experience of DQN in un-
manned vehicle field was quickly applied to un-
manned ships. Cheng and Zhang [32] made use of 
DQN to learn obstacle avoidance for underactuated 
unmanned vessels. In their research, they designed a 
reward function based on target approaching, speed 
modification, and attitude correction.  

Based on these references, it can be concluded that 
a DQN-based agent can achieve autonomous end-to-
end learning from perception to action like humans. 
DQN inputs raw sensory data such as vision. Then, 
CNN can catch the hidden features by training, mak-
ing the algorithm's versatility and mobility satisfactory. 
Moreover, with the help of RL, these researches also 
proved that the planning and controlling can be treated 
as a merged issue, while human knowledge is not in-
dispensable. Since the traditional ways of developing 
ship autonomy has meet some bottlenecks, the DQN-
based method might be worth a try. 

3. A proposed approach 

As discussed previously, the long-term route plan-
ning will produce a rough lane or a rough route for a 

ship to follow. The following task is to follow such a 
lane while avoiding collisions. In this section, a DQN-
based approach is proposed to accomplish this task. At 
the beginning, rigorous ship mathematical models are 
derived to establish the foundation for training and 

vring characteristics consistent with a real ship. Then, 
static and dynamic obstacles (encountering vessels) 
are placed in the simulation world. The proposed 
DQN-based algorithm is then introduced to build the 
artificial intelligence of controlling.  

3.1.  Mathematical modelling of ship motions 

The success of RL-based algorithms requires suffi-
cient training episodes. Since such trainings generally 
take thousands of rounds, it can only proceed in a sim-
ulation world or with a lot of real-like data. Therefore, 
it is essential to make such a simulation world con-
sistent with the real world. In a simulation world, the 
problem of how to infer the coming status after a cer-
tain action should be addressed at first.  

The ship manoeuvring model is used to forecast the 
state changing of a ship when it takes a specific action, 
making the training environment consistent with the 
real world. In this area, ship manoeuvring motions are 
generally presented with a standard three degree-of-
freedom MMG model [33] that considers surge, sway, 
and yaw for simplification. Fig. 1 illustrates the static 
earth-fixed and the dynamic body-fixed 

 coordinate systems. The origin of  
locates at the middle of the ship o. -, - and - axes 
are positive to the bow of a ship, the starboard of the 
ship, and downwards of the water surface  respec-
tively. Assuming that the ship presented in Fig. 1 is 
manoeuvring at surge speed  and sway speed , the 
ship speed is . The heading angle is . 
The ship is turning with a rudder angle  at yaw rate 

. 
The MMG model used in this research describes the 

hydrodynamic force and the moment in three aspects: 
hull, propeller and rudder. The motion equations are 
expressed as the following [34]: 

  

where subscripts , , and  denote hull, propeller, 
and rudder, respectively, with force (  and ) and mo-
ment ( ).  is the ship mass,  and  are added 
mass due to motions in surge and sway directions. ,  



and  are surge, sway and yaw acceleration, and , , 

are the moments of inertia, where m. 
If not particularly specified, the parameters, such as 
velocity ( , , , and ), acceleration ( , , and ), 
force (  and ), and moment ( ) are defined on or 
around midship. According to the MMG model, the 
trajectory and status of a ship can be predicted under 
different initial conditions (positions, speeds, rudder 
angles and different angular velocities). 
 

 

Fig.1. Applied earth-fixed and body-fixed coordinate systems 

3.2. Deep Q-Network 

Based on the ship model supported by MMG, DQN 
is adopted in this research to build the artificial intel-
ligence for navigation and collision avoidance along a 
planned route or a lane. As discussed, RL-based meth-
ods consider tasks in which the agent interacts with an 
environment through a sequence of observations, ac-
tions and rewards. In RL, rewards represents the gains 
or losses after specific actions. The function of esti-
mating rewards is called action-value function. The 
goal of RL is to learn an optimal policy for sequential 
decision problems by maximizing a cumulative future 
reward [35].  

To estimate the action-value function, the Bellman 
equation is used as an iterative update. In practice, 
most problems are difficult to learn action values in all 
states separately. Instead, DQN uses a deep CNN to 
approximate the optimal action-value function. 

                (2) 

where  is the reward at each time-step , achievable 
by an action policy , after making an ob-
servation  and taking an action . 

DQN is a multi-layered neural network that 
is used to evaluate action values, where  

are the parameters of the Q-network at iteration . The 

agent experience are stored at 
each time-step  in a data set . During 
learning, we apply Q-learning updates, on samples (or 
minibatches) of experience , drawn 
uniformly randomly from the pool of stored samples. 
The loss function is [36]: 

                     (3) 

in which  is the discount factor determining the 
 are the parameters of the Q-net-

work at iteration  and  are the network parameters 
used to compute the target at iteration .  

In this research, DQN lays the foundation of artifi-
cial intelligence for autonomous ships by selecting ac-
tions in a way that maximizes future rewards. In order 
to remove correlations of data, a Dueling Network Ar-
chitecture was established [37], which includes two 
CNN. One is called the Q network, and the other is 
called the target Q network. Moreover, the architec-
ture and initial neural network parameters of the two 
neural networks are the same. Hence, this section only 
introduces the architecture of the target Q Network for 
simplicity. This CNN is made up of three convolu-
tional layers and then followed by two fully connected 
layers and one pooling layer, as shown in Fig. 2. 

The agent observes the sailing situation from the 
top view as shown on the left-top of Fig. 2. Then, the 
sailing situation including the waterways, encountered 
vessels are then simplified as sequential images or 
frames. Subsequently, every four fixed-interval 
frames will be used as the input of the CNN. This re-
search simplifies the input as four 80×80 pixels reso-
lution images to lower the burden of calculation. Then, 
the first hidden layer convolves 32 filters of 8×8 pixels 
with stride 4 with the input images and applies a recti-
fier nonlinearity. Followed by a pooling layer, it 
adopts MaxPooling, with sliding window 2×2 and 
stride 2. The second hidden layer convolves 64 filters 
of 4×4 with stride 2, again followed by a rectifier non-
linearity. This is followed by a third convolutional 
layer that convolves 64 filters of 3×3 with stride 1 fol-
lowed by a rectifier. The final hidden layer is fully 
connected and consists of 512 rectifier units [3]. Since 
the Dueling network is a two-stream architecture, 
these units are divided into two parts and sent to sepa-
rate streams. Each stream contains a fully connected 
layer. The final layer combines the output of the two 
streams, and the output of this network is a set of Q-



values for each valid action [4]. Moreover, the output 
is the Q-value from executing a certain action. 

In this model, CNN is used as an unsupervised tool 
that is capable of learning features in the ship control-
ling and collision avoidance based on sequential im-
ages. With the help of DQN, the ship will build a 
memory or experience, which instructs itself the situ-
ation that might happen after a specific action, repre-
sented in simplified and sequential figures. 

3.3. Reward functions 

The following task is to teach artificial intelligence 
which consequence or situation is appreciated in a 
navigation. For example, collisions should be avoided 
and punished, whereas approaching a destination 
should be rewarded. Based on the sequential figures 
given by CNN, this procedure is translated as a reward 
function. An appropriate reward function will make 
the manoeuvring behaviours of a ship similar to a 

fects the choices of a helmsman should be described 
as appropriate rewards or punishments. Since many 
factors have a direct or indirect influence on the deci-
sions of the helmsman, it might take enormous effort 
to enumerate these factors perfectly in a reward func-
tion, which should be a huge engineering problem. 

Hence, this research only selects four typical factors 
from different perspectives to design a reward func-
tion for simplicity, aiming to prove the applicability of 
the proposed approach. More factors can be discussed 
in the future. A helmsman might take more factors into 
consideration in the navigation.  

 (1) Heading (Course) deviation. Since a route has 
already been set in advance, the ship should keep its 
heading consistent with the direction of this route as 
much as possible. Hence, the included angle between 

the quantification of the consistency. In this research, 
the reward of this factor is denoted as, 

             (4) 

where  represents the included angle between 
the ship heading and the route or the lane.  is a 
constant that is greater than 0. When  is between 
-  and 
mal, then the reward is set to . When  is 

abnormal, then the reward is set to . This pol-
icy will encourage the ship to keep its heading parallel 
with the direction of the route. 

 
 

Fig.2. The architecture of the DQN in this research
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 (2) Lane deviation. Besides the included angle, the 
deviation to the planned route is another essential fac-
tor while navigating. As it is well known, vehicle usu-
ally travels within a lane. Similarly, ships always 
travel along a specific or customary route. The only 
difference is that the route of a ship is much wider than 
a lane of an automobile. To model this factor, an APF-
based model is introduced to quantify the deviation to 
the middle of the waterway or lane. Refer to the re-
search conducted in the driverless car, a lane potential 
model is used [38], which is shown in Fig. 3. 

 

Fig.3. The modelling of lane deviation 

D is a constant, which denotes the 1/2 width of this 
lane. d, d1 and d2 denote the displacement to the mid-
dle of the route. In Fig.3, Ship1 is still in the route, but 
there is a small deviation to the middle. Ship2 is al-
ready out of the route. Based on the lane potential, the 
degree of the displacement deviation can be denoted 
as (d  D)/D. In our research, we simply do not en-
courage the ship to sail out of the lane or the route, 
making the training easier. Hence, this reward is de-
noted as, 

             (5) 

where  denotes the reward value when the ship 
is sailing in the middle of the route,  denotes 
the punishment when the ship is out of the route. 
Moreover, if the target is out of the lane, the current 
episode of training can be considered as failed and the 
training process will restart. 

(3) Collision. To avoid collision is the first priority 
for ships. When colliding with some objects, such as 
encountering with other ships, shallow water, rocks, or 
a coastline, the ship should be punished. This reward 
is denoted as, 

               (6) 

where  denotes the punishment value. More-
over, if the target collides with something, the present 
episode of training can be considered as failed and the 
training process will restart too. In particular,  
should be assigned with a relatively large value, since 
avoiding collisions should always be the priority. 

(4) Ship domain. Ship domain is a concept invented 
by traditional marine technologies [39]. In practice, 
collision avoidance is very difficult for a cargo ship 
due to its large tonnage, huge inertia, and relatively 
weak driving forces. Therefore, an imaginary region, 
namely a ship domain, should be defined in advance 
which is generally 7 times longer than its length and 3 
times wider than its width. When an obstacle has en-
tered this area, caution warnings will be triggered, 
which is a tense situation for all the crews. An experi-
enced helmsman should try to avoid this situation. 
This reward can be denoted as, 

           (7) 

where  denotes the punishment when some 
 

Based on these four factors, the global reward func-
tion can be defined as, 

   (8) 

As elaborated previously, the factors affect the ship 
are more than these four discussed in this section. The 
reason for choosing these four lies in that they are 
coming from different perspectives. In the past, it was 
difficult to consider them all in one framework. More 
factors based on another perspective can be modelled 
similarly. It is worth noting that the coefficient values 
of Eq. (4) to Eq. (7) will be discussed in the case study. 

Based on Eq. (8), the training process can be run in 
accordance with Fig. 8. After sufficient training, the 
artificial intelligence of manipulating this ship can be 
obtained. The details of training will be given in the 
following section.  

4. A case study 

To demonstrate and to validate the proposed ap-
proach, a case study is given in this section 

4.1. Experimental platform 

The simulation, training and validation environ-
ment are built with PyCharm, which uses Python 3.6.8 
as the coding language, TensorFlow-GPU 1.14.0 as 

d1 

D 

d2 

Customary waterway 

Ship1 

Ship2 



the machine learning library and Gym 0.14 as the RL 
library. The computing and training are accomplished 
on a CORE i7 9700K PC, a GTX 1660 Ti as the GPU, 
Windows 10 Professional as the OS. 

As elaborated on Section 3.1, in this environment, a 
ship is described by a rigorous hydrodynamic model 
of MMG. Meanwhile, this research chooses a 
KVLCC2 tanker as the target ship. The free-running 
model tests of this ship carried out by the Maritime 
Research Institute Netherlands (MARIN) are referred 
for the validation of the mathematical model [40-41]. 
The ship model is scaled to 7 metres with a scale factor 
of 45.7. Simulations are performed with the model-
scale ship parameters as presented in Table 1. More 
detailed information can be found in the reference [33]. 
With the help of MMG, the resulting status after a cer-
tain operation can be predicted.  

Table 1 

Basic parameters of the KVLCC2 model within the MMG model 

  
  

  
  

  
  

  

 

 

Fig.4. Main UI of the experiment platform 

The navigation environment and the corresponding 
software program have been presented in Fig. 4. As 
represented in this figure, the yellow ship at the bot-
tom is the controlled ship, which is based on the 
KVLCC2 model. In particular, the main layout repre-
sents a route or a lane that has already been planned 

by the long-term route planning. The observed area is 
600×600 pixels, which represents a 128-metre-width 
planned waterway. The left border represents the left 
boundary of this route, and the right border represents 
the right boundary of this waterway. The shallow 
green straight line in the middle represents the central 
line of this route or lane. The white vessel represents 
the encountering vessels, and the grey rock icons rep-
resent the static obstacles. The controlled ship should 
try to follow the central line of the route, while sailing 
forward and avoiding all the collisions. 

Moreover, the inference interval of this platform is 
one second per frame or step. Every single frame in 
this platform stands for one second in the real world. 

4.2. Basic modelling of DQN 

As elaborated in Section 3.2, in the learning process, 
the CNN of DQN selects 32 groups of 4 frames of con-
tinuous images as the input in each time step. However, 
the size of the input frame or picture is 32 bits × 600 
pixels × 600 pixels × 4 frames, which is too huge caus-
ing the parameter update slowly. Therefore, the origi-
nal sequential images have been scaled to 80 × 80 pix-
els before greyed and binarized as elaborated in Sec-
tion 3.2. As a result, the size of input data is reduced 
to 32 bits × 80 pixels × 80 pixels × 4 frames. Moreover, 
the background has been set to plain black, and the 
grey value of the controlled ship and obstacles is set to 
255, making the binarization easier. After such pre-
processing, the size of the input is compressed to 1 bits 
× 80 pixels × 80 pixels × 4 frames, which is demon-
strated in Fig. 5. 

Subsequently, the input to the CNN consists of 
32×80×80×4 image. Meanwhile, the output is the Q-
value after executing a certain action. In other words, 
the output of the CNN in each state is equal to the size 
of the action space, corresponding to the action-value 
function of each action in a certain state.  

According to the CNN output, a rudder angle can 
be selected. We also use a simple frame-skipping tech-
nique that the agent sees and selects actions on each 
4th frame instead of all frames, and its last action is re- 
peated on skipped frames [42].Then, the selected rud-
der angle is input into the hydrodynamic model of the 
ship to obtain the trajectory of the ship. Subsequently, 
4 consecutive frames of navigation environment im-
ages are input into the CNN to continue the above pro-
cess. After repetitive training processes, the agent ship 
will have the intelligence of avoiding obstacles. 

Controlled ship 

(KVLCC2) 

Static 

Obstacle 

Encountered 
Vessel 

Right Boundary Left Boundary 

Middle of the 
Lane or Route 



 

Fig.5. Pre-processing of the input images

In this research, the training is carried out in a way 
that gradually increases the complexity and difficulty 
of the experimental environment that includes two 
steps: static obstacles in a static scenario; static and 
dynamic obstacles in a continuous route. 

4.3. Basic training in a static environment 

Static obstacles in a static environment are used to 
build a basic consciousness of collision avoidance for 
the controlled ship in the experiment introduced in 
Section 4.1.  

In this training, there are two static obstacles, which 
are located at (0,300) and (350,100) with sizes 
240×145 and 180×109, as shown in Fig. 6. The ship is 
designed to sail from the bottom to the top with the 
help of DQN proposed in Section 3. In practice, the 
available actions of a ship are very large, including dif-
ferent rudder angle and different propeller speed. 
However, a cargo ship merely changes its propeller 
speed at open sea due to the features of engines. Hence, 
it is fair to set the propeller speed as a static value, 
which is 10.4 round per seconds in this research. Par-
ticularly, 10.4 round per seconds is also a normative 
testing value in the testing of ship's manoeuvrability. 
To make the convergence faster, the rudder angle of 
the ship is set to only 3 options, [-3°, 0°, 3°] to reduce 
the training time. In fact, other values of rudder angle, 
+1°, -1°, +2°, -2°, +4°, -4°, +5°, -5°, +7°, -7°, are also 
applicable. However, the training of DQN will take an 
unbearable long time when the actions are too many. 
Additionally, the undetermined coefficients in Section 
3 are assigned preliminarily, where , 

  and . In the latest re-
search, these coefficients can be further analysed and 
learned by imitate reinforcement learning, which will 
be discussed in the future. 

According to the distance between the start and the 
destination and the speed of the agent ship, the ship 

can reach the destination in less than 100 steps as long 
as it does not turn in circles or deviate from its course. 
For this reason, a maximum of 100 steps is specified 
for one exploration in order to accelerate the conver-
gence of this algorithm referring to other similar re-
search. It means that if the controlled ship does not 
reach the destination in 100 steps, the exploration is 
considered to be a failure, and the ship will return to 
its start point to re-explore. 

 

 

Fig.6. Basic training of the DQN 

The convergence process of the proposed approach 
in this static environment is shown in Fig. 7. The X-
axis represents the number of training episodes, and 
the Y-axis represents the number of successful arrivals 
in 100 episodes. It can be inferred from Fig. 7 that the 
agent began to have the ability to avoid static obstacles 
after about 2,400 times of exploring. Such an ability 
became stronger in accumulated training. When the 
ship explored more than 3,400 times, it can reach the 
destination faithfully, and the parameters of the neural 
networks were stored. 

32 bits × 600 pixels × 600 pixels  

32 bits × 80 pixels × 80 pixels 

1bit × 80 pixels × 80 pixels 



 

Fig.7. The convergence of DQN algorithm in static scenarios 

4.4. Training in an environment with dynamic obstacles 

After the basic training has been accomplished in 
the previous section, the DQN-based ship can be fur-
ther trained in a more complicated environment, 
which better resembles practical navigation situations. 
First of all, the route is endless, the controlled ship 
should always move upwards. Moreover, the encoun-
tered vessels and static obstacles will be refreshed ran-
domly at any place. Therefore, the controlled ship has 
to face various kinds of situations.  

All the constants used in this section share the same 
values as the previous section. Such a training took 13 
hours, much longer than the first step. Then, the train-
ing CNN and the target CNN had converged eventu-
ally. According to the CNN output, the appropriate ac-
tions, which is actually the choice of rudder angle can 
always be selected. The output artificial intelligence 
provides a satisfying performance in avoiding colli-
sions while keeping itself in the middle of the planned 

route. It is worth noting that this ship is set to be im-
balanced on the rudder on purpose making the control 
of the ship difficult. 

Fig. 8 is a typical collision avoidance of the con-
trolled ship after about 80 hours of training, which 
contains 12 sub-figures listed according to the time se-
quence. Figures on the left represent the controlled 
ship and its surroundings on a specific time. The cor-
responding trajectories of the controlled ships and the 
encountered vessels are represented in the sub-figures 
on the right side. In particular, the trajectories of the 
controlled ship are denoted as blue curves, while the 
trajectories of the encountered vessels are denoted as 
red curves.  

Based on Fig. 8, it can be inferred that the controlled 
ship had encountered with four encountering ships, 
named Ship 1, Ship 2, Ship 3 and Ship 4. Ship 1 is far 
away from the smart ship as shown in Fig. 8(a), and 
the controlled ship kept its heading with no further ac-
tion. In Fig. 8(b), a typical head-on encountering hap-
pened. The controlled ship turned starboard and 
passed through on the port side of Ship 2, as shown in 
Fig. 8(c). Afterwards, the controlled ship returned to 
the middle of the planned route and encountered with 
Ship 3 was on the left, as illustrated in Fig. 8(d) and 
Fig. 8(e). Fig. 8(f) shows that the controlled ship 
turned to the left to avoid Ship 3. Then, the controlled 
ship succeeded in avoiding the collisions with Ship 4 
using a very sharp turn. The video of the trained ship 
sailing in the dynamic waterway can be found online 
(https://youtu.be/KddYixKSn-4). 

With this artificial intelligence, the controlled ship 
is capable of surviving in these difficult simulation 
scenarios for more than 2,000 steps in general. In par-
ticular, the collision happens only when the collision 
situation seems evitable since the encountered vessels 
and rocks are refreshed frequently and randomly. 
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Fig.8. Dynamic ship collision avoidance 



To validate this approach, manual works (human 
players), a traditional LOS/PID-based algorithm [22] 
and an APF-Vector-based algorithm [16] are used to 
compare in the same simulation world. In particular, 
the manual works is used a special baseline. As de-
scribed above, high-speed encountered vessels might 
appear continuously in this narrow waterway. Hence, 
the task of controlling this ship to avoid collisions in 
this world is quite difficult. In this occasion, it is rea-
sonable to use how many steps (actually seconds in the 
simulation world) the manipulated ship survived in av-
erage as an indicator to quantize its ability when using 
different methods. Such an evaluation method is com-
mon in RL research [43]. The result is given in Fig. 9. 
In this figure, X-axis represents the training time 
(hours), and Y-axis represents the average surviving 
steps in 10 rounds of trails. 

As elaborated previously, there is a bias or an offset 
placed into the rudder of this ship on purpose, and such 
disturbance makes the robust control of the ship more 
difficult. Three human volunteers who have never con-
trol a ship before were asked to control this ship for 
100 rounds. Therefore, it takes hours for them to get 
used to the imbalance of rudder. Meanwhile, the re-
sults have been recorded by the simulation platform 
mentioned in Section 4.1. However, even so, he or she 
generally cannot make the ship survive more than 350 
steps, since the dynamic obstacles appeared on any 
palaces, requiring many intense manipulations. The 
LOS/PID-based approach is capable of maintaining 
the heading of this ship perfectly. However, this 
method only performs satisfactorily when facing static 
obstacles. In the testing, such method generally lasts 
in this test for 112 steps on average. The vector/APF-
based method seems to be completely unable to con-
trol this ship, which can only last for 51 steps on aver-
age. In fact, many improvements had been made on the 
LOS/PID-based methods, APF-based methods. For 
simplification, only the classical forms of these meth-
ods were compared here. 

 

Fig.9. Comparisons with manual works, PID and APF-based methods 

In the training, the performance of the proposed ap-
proach became better after 6 hours of training. After 
13 hours, the performance of the approach had con-
verged. Then, this controlled ship can always find a 
way to evade from threats. It collided with obstacles 
only when facing hopeless complexions, since rocks 
and encountered vessels refreshed randomly. Mean-
while, this controlled ship always knew to get back to 
the middle of the planned route. In this simulation 
world, we can give a conclusion that the proposed ap-
proach performs better than human players without 
any human experience input. All the techniques of 
evading from encountered vessels and static obstacles, 
controlling such an imbalanced ship are learned 
through un-supervised training. Moreover, the short-
term path planning and motion controlling are accom-
plished simultaneously. 

5. Conclusions and future work 

In the area of autonomous ship, researchers are 
more willing to divide the collision avoidance problem 
into two sub-systems, path planning and motion con-
trolling. However, facing a general-purpose cargo ship, 
more and more factors should be taken into consider-
ation, including the relatively insufficient driving 
power, customary routes, navigational regulations and 
others. In this situation, neuron networks might be a 
solution. In this paper, a novel perspective was put for-
ward in which multiple factors in collision avoidance 
can be described and modelled as the constraints of 
RL-based methods. To prove the effectiveness, a 
DQN-based approach was proposed, which took the 
ship manoeuvring, navigation regulations, routes, col-
lision avoidance as a merged training problem. In the 
simulations, it is proved to be superior to manual 
works after 13 hours of training. Hence, the DQN and 
other Deep RL-based methods might be a promising 
way to build artificial intelligence of controlling a 
cargo ship.  

In the future, the proposed DQN-based approach 
can be further improved. 

1) Limited actions of the cargo ship had been used 
to reduce the training time and the calculation amount 
in this research, making the behaviours of the trained 
cargo weird in a normal sense. More actions should be 
introduced in the future.  

2) More factors should be further discussed, so as to 
make the behaviours of the cargo closer to a helmsman. 
The corresponding reward function should be im-
proved accordingly. 
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3) The constant coefficients of the reward function 
in DQN should be determined with rigorous and rea-
sonable methods, such as imitate RL-based method. 

4) The proposed approach and the model will be 
further validated on a real cargo ship. 

Acknowledgements 

This work is supported by National Key R&D Pro-
gram of China [2018YFB1601503] and Ministry of In-
dustry and Information Technology of the People's Re-
public of China [2018473]. 

References 

[1] L. Kretschmann, H.C. Burmeister, C. Jahn, Analyzing the eco-
nomic benefit of unmanned autonomous ships: An exploratory 
cost-comparison between an autonomous and a conventional 
bulk carrier, Research in Transportation Business & Manage-
ment. 25 (2017) 76-86. 

[2] 
following with motion prediction for unmanned surface vehicle 
operating in cluttered environments, Autonomous Robots. 36 
(2014) 383-405. 

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, 
M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. 
Ostrovski, Human-level control through deep reinforcement 
learning, Nature. 518 (2015) 529. 

[4] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den 
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, 
M. Lanctot, Mastering the game of Go with deep neural net-
works and tree search, Nature. 529 (2016) 484. 

[5] W. Naeem, T. Xu, R. Sutton, A. Tiano, The design of a naviga-
tion, guidance, and control system for an unmanned surface ve-
hicle for environmental monitoring, Proceedings of the Institu-
tion of Mechanical Engineers Part M: Journal of Engineering 
for the Maritime Environment. 222 (2008) 67-79.  

[6] J. Alves, P. Oliveira, R. Oliveira, A. Pascoal, M. Rufino, L. Se-
bastiao, C. Silvestre, Vehicle and mission control of the 
DELFIM autonomous surface craft, in: 2006 14th Mediterranean 
Conference on Control and Automation, IEEE, 2006, pp. 1-6. 

[7] T.I. Fossen, Handbook of marine craft hydrodynamics and mo-
tion control, John Wiley & Sons, 2011. 

[8] L.E. van Cappelle, L. Chen, R.R. Negenborn, Survey on short-
term technology developments and readiness levels for autono-
mous shipping, in: Proceedings of the 9th International Confer-
ence on Computational Logistics (ICCL 2018), Vietri sul Mare, 
Italy, 2018, pp. 106-123. 

[9] M. Schiaretti, L. Chen, R.R. Negenborn, Survey on autonomous 
surface vessels: Part I - A new detailed definition of autonomy 
levels, in: Proceedings of the 8th International Conference on 
Computational Logistics (ICCL 2017), Southampton, UK, 2017, 
pp. 219-233. 

[10] M. Schiaretti, L. Chen, R.R. Negenborn, Survey on autonomous 
surface vessels: Part II - Categorization of 60 prototypes and 
future applications, in: Proceedings of the 8th International 
Conference on Computational Logistics (ICCL 2017), South-
ampton, UK, 2017, pp. 234-252. 

[11] L. Chen, R.R. Negenborn, G. Lodewijks, Path Planning for Au-
tonomous Inland Vessels Using A*BG, in: Proceedings of the 
7th International Conference on Computational Logistics 
(ICCL 2016), Lisbon, Portugal, 2016, pp. 65-79. 

[12] G. Casalino, A. Turetta, E. Simetti, A three-layered architecture 
for real time path planning and obstacle avoidance for surveil-
lance USVs operating in harbour fields, in: Oceans 2009-Eu-
rope, IEEE, 2009, pp. 1-8. 

[13] S. Campbell, W. Naeem, A rule-based heuristic method for 
colregs-compliant collision avoidance for an unmanned surface 
vehicle, IFAC Proceedings Volumes. 45 (2012) 386-391. 

[14] F. Ma, Y. Chen, Probabilistic Assessment of Vessel Collision 
Risk: An Evidential Reasoning and Artificial Potential Field-
Based Method, in: Multi-Criteria Decision Making in Maritime 
Studies and Logistics, Springer, 2018: pp. 123-149. 

[15] T. Wang, X. Yan, Y. Wang, Q. Wu, Ship domain model for 
multi-ship collision avoidance decision-making with COLREGs 
based on artificial potential field, TransNav: International Jour-
nal on Marine Navigation and Safety of Sea Transportation. 11 
(2017) 85-92. 

[16] A. Lazarowska, A New Potential Field Inspired Path Planning 
Algorithm for Ships, in: 2018 23rd International Conference on 
Methods & Models in Automation & Robotics (MMAR), IEEE, 
2018, pp. 166-170. 

[17] S. Campbell, W. Naeem, G.W. Irwin, A review on improving 
the autonomy of unmanned surface vehicles through intelligent 
collision avoidance manoeuvres, Annual Reviews in Control. 
36 (2012) 267-283. 

[18] E. Zereik, A. Sorbara, M. Bibuli, G. Bruzzone, M. Caccia, Pri-

Obstacle Avoidance and Speed Regulation, IFAC-Papers On 
Line. 48 (2015) 25-30. 

[19] S. Moe, K.Y. Pettersen, Set-based Line-of-Sight (LOS) path 
following with collision avoidance for underactuated unmanned 
surface vessel, in: 2016 24th Mediterranean Conference on 
Control and Automation, IEEE, 2016, pp. 402-409. 

[20] Y. Liu, R. Song, R. Bucknall, A practical path planning and 
navigation algorithm for an unmanned surface vehicle using the 
fast marching algorithm, in: OCEANS 2015-Genova, IEEE, 
2015, pp. 1-7. 

[21] H. Zheng, R.R. Negenborn, G. Lodewijks, Predictive path fol-
lowing with arrival time awareness for waterborne AGVs, 
Transportation Research Part C: Emerging Technologies. 70 
(2016) 214-237.  

[22] R. Miao, Z. Dong, L. Wan, & J. Zeng, Heading control system 
design for a Micro-USV based on an adaptive expert S-PID al-
gorithm. Polish Maritime Research. 25 (2018) 6-13. 

[23] C. Liu, R.R. Negenborn, X. Chu, H. Zheng, Predictive path fol-
lowing based on adaptive line-of-sight for underactuated auton-
omous surface vessels, Journal of Marine Science and Technol-
ogy. 23 (2018) 483-494. 

[24] S.K. Sharma, R. Sutton, An optimised nonlinear model predic-
tive control based autopilot for an uninhabited surface vehicle, 
IFAC Proceedings Volumes. 46 (2013) 73-78. 

[25] K. Blekas, K. Vlachos, RL-based path planning for an over-ac-
tuated floating vehicle under disturbances, Robotics and Auton-
omous Systems. 101 (2018) 93-102. 

[26] B. Yoo, J. Kim, Path optimization for marine vehicles in ocean 
currents using reinforcement learning, Journal of Marine Sci-
ence and Technology. 21 (2016) 334-343. 

[27] C. Chen, X. Chen, F. Ma, X. Zeng, J. Wang, A knowledge-free 
path planning approach for smart ships based on reinforcement 
learning, Ocean Engineering. 189 (2019) 106299. 



[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, 
D. Wierstra, M. Riedmiller, Playing Atari with deep reinforce-
ment learning, in: Neural Information Processing Systems Deep 
Learning Workshop, 2013. 

[29] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.M. Allen, 
V.D. Lam, A. Bewley, A. Shah, Learning to drive in a day, in: 
2019 International Conference on Robotics and Automation, 
IEEE, 2019, pp. 8248-8254. 

[30] P. Mirowski, M. Grimes, M. Malinowski, K.M. Hermann, K. 
Anderson, D. Teplyashin, K. Simonyan, A. Zisserman, R. Had-
sell, Learning to navigate in cities without a map, in: Advances 
in Neural Information Processing Systems, 2018, pp. 2419-
2430. 

[31] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, 
P. Goyal, L.D. Jackel, M. Monfort, U. Muller, J. Zhang, End to 
end learning for self-driving cars, (2016). arXiv preprint 
arXiv:1604.07316 . 

[32] Y. Cheng, W. Zhang, Concise deep reinforcement learning ob-
stacle avoidance for underactuated unmanned marine vessels, 
Neurocomputing. 272 (2018) 63-73. 

[33] J. Liu, F. Quadvlieg, R. Hekkenberg, Impacts of the rudder pro-
file on manoeuvring performance of ships, Ocean Engineering. 
124 (2016) 226-240. 

[34] J. Liu, R. Hekkenberg, F. Quadvlieg, H. Hopman, B. Zhao, An 
integrated empirical manoeuvring model for inland vessels, 
Ocean Engineering, 137 (2017) 287-308. 

[35] G. Zhao, Y. Tao, H. Liu, X. Deng, Y. Chen, H. Xiong, X. Xie, 
A robot demonstration method based on LWR and Q-learning 
algorithm, Journal of Interlligent & Fuzzy Systems, 35 (2018) 
35-46. 

[36] I. Carlucho, M. De Paula, S. Wang, Y. Petillot, G.G. Acosta, 
Adaptive low-level control of autonomous underwater vehicles 
using deep reinforcement learning, Robotics & Autonomous 
Systems. 107 (2018) 71-86. 

[37] Z. Wang, N. De Freitas, M. Lanctot, Dueling Network Archi-
tectures for Deep Reinforcement Learning, in: 33rd Interna-
tional Conference on Machine Learning (ICML), 2016. 

[38] Y. Rasekhipour, A. Khajepour, S.K. Chen, B. Litkouhi, A Po-
tential Field-Based Model Predictive Path-Planning Controller 
for Autonomous Road Vehicles, IEEE Transactions on Intelli-
gent Transportation Systems. 18 (2017) 1255-1267. 

[39] F. Yahei, T. Kenichi, Traffic Capacity, Journal of Navigation. 
24 (1971) 543 552. 

[40] S.W. Lee, S.L. Toxopeus, F.H.H.A. Quadvlieg, Free Sailing 
Manoeuvring Tests on KVLCC 1 and KVLCC 2. Technical Re-
port. Maritime Research Institute Netherlands, (2007). 

[41] Quadvlieg, F.H.H.A. Brouwer, KVLCC2 Benchmark Data In-
cluding Uncertainty Analysis To Support Manoeuvring Predic-
tions, (2011). 

[42] M.G. Bellemare, J. Veness, M. Bowling, Investigating Contin-
gency Awareness Using Atari 2600 Games, in: 2012. 

[43] A. Banino, C. Barry, B. Uria, et al., Vector-based navigation 
using grid-like representations in artificial agents. Nature. 
557(2018) 429-447.  
 


