98 research outputs found
Perceptual expertise improves category detection in natural scenes
There is much debate about how detection, categorization, and within-category identification relate to one another during object recognition. Whether these tasks rely on partially shared perceptual mechanisms may be determined by testing whether training on one of these tasks facilitates performance on another. In the present study we asked whether expertise in discriminating objects improves the detection of these objects in naturalistic scenes. Self-proclaimed car experts (N = 34) performed a car discrimination task to establish their level of expertise, followed by a visual search task where they were asked to detect cars and people in hundreds of photographs of natural scenes. Results revealed that expertise in discriminating cars was strongly correlated with car detection accuracy. This effect was specific to objects of expertise, as there was no influence of car expertise on person detection. These results indicate a close link between object discrimination and object detection performance, which we interpret as reflecting partially shared perceptual mechanisms and neural representations underlying these tasks: the increased sensitivity of the visual system for objects of expertise – as a result of extensive discrimination training – may benefit both the discrimination and the detection of these objects. Alternative interpretations are also discussed
Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC)
The genome sequences of two Escherichia coli O104:H4 strains derived from two different patients of the 2011 German E. coli outbreak were determined. The two analyzed strains were designated E. coli GOS1 and GOS2 (German outbreak strain). Both isolates comprise one chromosome of approximately 5.31 Mbp and two putative plasmids. Comparisons of the 5,217 (GOS1) and 5,224 (GOS2) predicted protein-encoding genes with various E. coli strains, and a multilocus sequence typing analysis revealed that the isolates were most similar to the entero-aggregative E. coli (EAEC) strain 55989. In addition, one of the putative plasmids of the outbreak strain is similar to pAA-type plasmids of EAEC strains, which contain aggregative adhesion fimbrial operons. The second putative plasmid harbors genes for extended-spectrum β-lactamases. This type of plasmid is widely distributed in pathogenic E. coli strains. A significant difference of the E. coli GOS1 and GOS2 genomes to those of EAEC strains is the presence of a prophage encoding the Shiga toxin, which is characteristic for enterohemorrhagic E. coli (EHEC) strains. The unique combination of genomic features of the German outbreak strain, containing characteristics from pathotypes EAEC and EHEC, suggested that it represents a new pathotype Entero-Aggregative-Haemorrhagic Escherichiacoli (EAHEC)
Shiga Toxin and Lipopolysaccharide Induce Platelet-Leukocyte Aggregates and Tissue Factor Release, a Thrombotic Mechanism in Hemolytic Uremic Syndrome
BACKGROUND: Aggregates formed between leukocytes and platelets in the circulation lead to release of tissue factor (TF)-bearing microparticles contributing to a prothrombotic state. As enterohemorrhagic Escherichia coli (EHEC) may cause hemolytic uremic syndrome (HUS), in which microthrombi cause tissue damage, this study investigated whether the interaction between blood cells and EHEC virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS) led to release of TF. METHODOLOGY/PRINCIPAL FINDINGS: The interaction between Stx or LPS and blood cells induced platelet-leukocyte aggregate formation and tissue factor (TF) release, as detected by flow cytometry in whole blood. O157LPS was more potent than other LPS serotypes. Aggregates formed mainly between monocytes and platelets and less so between neutrophils and platelets. Stimulated blood cells in complex expressed activation markers, and microparticles were released. Microparticles originated mainly from platelets and monocytes and expressed TF. TF-expressing microparticles, and functional TF in plasma, increased when blood cells were simultaneously exposed to the EHEC virulence factors and high shear stress. Stx and LPS in combination had a more pronounced effect on platelet-monocyte aggregate formation, and TF expression on these aggregates, than each virulence factor alone. Whole blood and plasma from HUS patients (n = 4) were analyzed. All patients had an increase in leukocyte-platelet aggregates, mainly between monocytes and platelets, on which TF was expressed during the acute phase of disease. Patients also exhibited an increase in microparticles, mainly originating from platelets and monocytes, bearing surface-bound TF, and functional TF was detected in their plasma. Blood cell aggregates, microparticles, and TF decreased upon recovery. CONCLUSIONS/SIGNIFICANCE: By triggering TF release in the circulation, Stx and LPS can induce a prothrombotic state contributing to the pathogenesis of HUS
Osteochondral defects in the ankle: why painful?
Osteochondral defects of the ankle can either heal and remain asymptomatic or progress to deep ankle pain on weight bearing and formation of subchondral bone cysts. The development of a symptomatic OD depends on various factors, including the damage and insufficient repair of the subchondral bone plate. The ankle joint has a high congruency. During loading, compressed cartilage forces its water into the microfractured subchondral bone, leading to a localized high increased flow and pressure of fluid in the subchondral bone. This will result in local osteolysis and can explain the slow development of a subchondral cyst. The pain does not arise from the cartilage lesion, but is most probably caused by repetitive high fluid pressure during walking, which results in stimulation of the highly innervated subchondral bone underneath the cartilage defect. Understanding the natural history of osteochondral defects could lead to the development of strategies for preventing progressive joint damage
Biofilm Development on Caenorhabditis elegans by Yersinia Is Facilitated by Quorum Sensing-Dependent Repression of Type III Secretion
Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS
Autologous microsurgical breast reconstruction and coronary artery bypass grafting: an anatomical study and clinical implications
OBJECTIVE: To identify possible avenues of sparing the internal mammary artery (IMA) for coronary artery bypass grafting (CABG) in women undergoing autologous breast reconstruction with deep inferior epigastric artery perforator (DIEP) flaps. BACKGROUND: Optimal autologous reconstruction of the breast and coronary artery bypass grafting (CABG) are often mutually exclusive as they both require utilisation of the IMA as the preferred arterial conduit. Given the prevalence of both breast cancer and coronary artery disease, this is an important issue for women's health as women with DIEP flap reconstructions and women at increased risk of developing coronary artery disease are potentially restricted from receiving this reconstructive option should the other condition arise. METHODS: The largest clinical and cadaveric anatomical study (n=315) to date was performed, investigating four solutions to this predicament by correlating the precise requirements of breast reconstruction and CABG against the anatomical features of the in situ IMAs. This information was supplemented by a thorough literature review. RESULTS: Minimum lengths of the left and right IMA needed for grafting to the left-anterior descending artery are 160.08 and 177.80 mm, respectively. Based on anatomical findings, the suitable options for anastomosis to each intercostals space are offered. In addition, 87-91% of patients have IMA perforator vessels to which DIEP flaps can be anastomosed in the first- and second-intercostal spaces. CONCLUSION: We outline five methods of preserving the IMA for future CABG: (1) lowering the level of DIEP flaps to the fourth- and fifth-intercostals spaces, (2) using the DIEP pedicle as an intermediary for CABG, (3) using IMA perforators to spare the IMA proper, (4) using and end-to-side anastomosis between the DIEP pedicle and IMA and (5) anastomosis of DIEP flaps using retrograde flow from the distal IMA. With careful patient selection, we hypothesize using the IMA for autologous breast reconstruction need not be an absolute contraindication for future CABG
Genomic-Assisted Enhancement in Stress Tolerance for Productivity Improvement in Sorghum
Sorghum [Sorghum bicolor (L.) Moench], the fifth most important cereal crop in the world after wheat, rice, maize, and barley, is a multipurpose crop widely grown for food, feed, fodder, forage, and fuel, vital to the food security of many of the world’s poorest people living in fragile agroecological zones. Globally, sorghum is grown on ~42 million hectares area in ~100 countries of Africa, Asia, Oceania, and the Americas. Sorghum grain is used mostly as food (~55%), in the form of flat breads and porridges in Asia and Africa, and as feed (~33%) in the Americas. Stover of sorghum is an increasingly important source of dry season fodder for livestock, especially in South Asia. In India, area under sorghum cultivation has been drastically come down to less than one third in the last six decades but with a limited reduction in total production suggesting the high-yield potential of this crop. Sorghum productivity is far lower compared to its genetic potential owing to a limited exploitation of genetic and genomic resources developed in the recent past. Sorghum production is challenged by various abiotic and biotic stresses leading to a significant reduction in yield. Advances in modern genetics and genomics resources and tools could potentially help to further strengthen sorghum production by accelerating the rate of genetic gains and expediting the breeding cycle to develop cultivars with enhanced yield stability under stress. This chapter reviews the advances made in generating the genetic and genomics resources in sorghum and their interventions in improving the yield stability under abiotic and biotic stresses to improve the productivity of this climate-smart cereal
- …