456 research outputs found

    Lessons learned from performance of students of Pharmacology in self coded surprise test with negative marking.

    Get PDF
    Introduction: The present study aims to find the effect of instruction of negative marking in a self-coded MCQ examination on the performance of students in the subject of Pharmacology with respect to the raw score, correct score and negative score. Material and methods: This longitudinal study was conducted in the Department of Pharmacology, Rural Medical College, Loni. The Second MBBS students were exposed to a self-coded MCQ test twice by surprise. The first test (T1) was given without instructions of negative marking, while during the second test (T2) instructions for negative marking were given. The parameters of the raw score, negative score, corrected score and number of students who did not attempt respective MCQs were calculated. The number of students passing with modified Minimum Passing Level was calculated was compared with conventional Minimum Passing Level. Results: Sixty-seven students participated in the study. There was a statistically significant decrease in the raw score in the T2, while the increase in the negative score when compared with T1. The number of non-attempted questions was increased in T2. There was a statistically significant difference in the number of students passed with respect to raw score in T1 and T2, while no such difference was seen with respect to Negative score and Corrected score. Conclusion: The Corrected score and Negative score are not affected by the minimum passing level, indicating a better parameter of scoring than the raw score. Hence, the use of Negative score or Corrected score should be encouraged than the use of conventional Raw score. Keywords: Minimum Passing Level, Negative Marking, MCQ, Corrected score, Pharmacology, Formative assessment, surprise test, self-coded test

    Empirical vs Bayesian approach for estimating haplotypes from genotypes of unrelated individuals

    Get PDF
    BACKGROUND: The completion of the HapMap project has stimulated further development of haplotype-based methodologies for disease associations. A key aspect of such development is the statistical inference of individual diplotypes from unphased genotypes. Several methodologies for inferring haplotypes have been developed, but they have not been evaluated extensively to determine which method not only performs well, but also can be easily incorporated in downstream haplotype-based association analyses. In this paper, we attempt to do so. Our evaluation was carried out by comparing the two leading Bayesian methods, implemented in PHASE and HAPLOTYPER, and the two leading empirical methods, implemented in PL-EM and HPlus. We used these methods to analyze real data, namely the dense genotypes on X-chromosome of 30 European and 30 African trios provided by the International HapMap Project, and simulated genotype data. Our conclusions are based on these analyses. RESULTS: All programs performed very well on X-chromosome data, with an average similarity index of 0.99 and an average prediction rate of 0.99 for both European and African trios. On simulated data with approximation of coalescence, PHASE implementing the Bayesian method based on the coalescence approximation outperformed other programs on small sample sizes. When the sample size increased, other programs performed as well as PHASE. PL-EM and HPlus implementing empirical methods required much less running time than the programs implementing the Bayesian methods. They required only one hundredth or thousandth of the running time required by PHASE, particularly when analyzing large sample sizes and large umber of SNPs. CONCLUSION: For large sample sizes (hundreds or more), which most association studies require, the two empirical methods might be used since they infer the haplotypes as accurately as any Bayesian methods and can be incorporated easily into downstream haplotype-based analyses such as haplotype-association analyses

    Animals and their products utilized as medicines by the inhabitants surrounding the Ranthambhore National Park, India

    Get PDF
    The present ethnozoological study describes the traditional knowledge related to the use of different animals and animal-derived products as medicines by the inhabitants of villages surrounding the Ranthambhore National Park of India (Bawaria, Mogya, Meena), which is well known for its very rich biodiversity. The field survey was conducted from May to July 2005 by performing interviews through structured questionnaires with 24 informants (16 men and 8 women), who provided information regarding therapeutic uses of animals. A total of 15 animals and animal products were recorded and they are used for different ethnomedical purposes, including tuberculosis, asthma, paralysis, jaundice, earache, constipation, weakness, snake poisoning. The zootherapeutic knowledge was mostly based on domestic animals, but some protected species like the collared dove (Streptopelia sp.), hard shelled turtle (Kachuga tentoria), sambhar (Cervus unicolor) were also mentioned as important medicinal resources. We would suggest that this kind of neglected traditional knowledge should be included into the strategies of conservation and management of faunistic resources in the investigated area

    The Unfolded Protein Response Is Not Necessary for the G1/S Transition, but It Is Required for Chromosome Maintenance in Saccharomyces cerevisiae

    Get PDF
    BACKGROUND: The unfolded protein response (UPR) is a eukaryotic signaling pathway, from the endoplasmic reticulum (ER) to the nucleus. Protein misfolding in the ER triggers the UPR. Accumulating evidence links the UPR in diverse aspects of cellular homeostasis. The UPR responds to the overall protein synthesis capacity and metabolic fluxes of the cell. Because the coupling of metabolism with cell division governs when cells start dividing, here we examined the role of UPR signaling in the timing of initiation of cell division and cell cycle progression, in the yeast Saccharomyces cerevisiae. METHODOLOGY/PRINCIPAL FINDINGS: We report that cells lacking the ER-resident stress sensor Ire1p, which cannot trigger the UPR, nonetheless completed the G1/S transition on time. Furthermore, loss of UPR signaling neither affected the nutrient and growth rate dependence of the G1/S transition, nor the metabolic oscillations that yeast cells display in defined steady-state conditions. Remarkably, however, loss of UPR signaling led to hypersensitivity to genotoxic stress and a ten-fold increase in chromosome loss. CONCLUSIONS/SIGNIFICANCE: Taken together, our results strongly suggest that UPR signaling is not necessary for the normal coupling of metabolism with cell division, but it has a role in genome maintenance. These results add to previous work that linked the UPR with cytokinesis in yeast. UPR signaling is conserved in all eukaryotes, and it malfunctions in a variety of diseases, including cancer. Therefore, our findings may be relevant to other systems, including humans

    Overstimulation of NMDA Receptors Impairs Early Brain Development in vivo

    Get PDF
    BACKGROUND: Brains of patients with schizophrenia show both neurodevelopmental and functional deficits that suggest aberrant glutamate neurotransmission. Evidence from both genetic and pharmacological studies suggests that glutamatergic dysfunction, particularly with involvement of NMDARs, plays a critical role in the pathophysiology of schizophrenia. However, how prenatal disturbance of NMDARs leads to schizophrenia-associated developmental defects is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Glutamate transporter GLAST/GLT1 double-knockout (DKO) mice carrying the NMDA receptor 1 subunit (NR1)-null mutation were generated. Bouin-fixed and paraffin-embedded embryonic day 16.5 coronal brain sections were stained with hematoxylin, anti-microtubule-associated protein 2 (MAP2), and anti-L1 antibodies to visualize cortical, hippocampal, and olfactory bulb laminar structure, subplate neurons, and axonal projections. NR1 deletion in DKO mice almost completely rescued multiple brain defects including cortical, hippocampal, and olfactory bulb disorganization and defective corticothalamic and thalamocortical axonal projections. CONCLUSIONS/SIGNIFICANCE: Excess glutamatergic signaling in the prenatal stage compromises early brain development via overstimulation of NMDARs

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    An experimental study of cathodic protection for chloride contaminated reinforced concrete

    Get PDF
    Cathodic protection (CP) is being increasingly used on reinforced concrete structures to protect steel reinforcing bars from corrosion in aggressive conditions. Due to the complexity of environmental conditions, the design specifications in national and international standards are still open to discussion to achieve both sufficient and efficient protection for reinforced concrete structures in engineering practices. This paper reports an experimental research to investigate the influence of chloride content on concrete resistivity, rebar corrosion rate and the performance of CP operation using different current densities. It aims to understand the correlation between the chloride content and concrete resistivity together with the CP current requirement, and to investigate the precision of the CP design criteria in standards

    Global haplotype partitioning for maximal associated SNP pairs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global partitioning based on pairwise associations of SNPs has not previously been used to define haplotype blocks within genomes. Here, we define an association index based on LD between SNP pairs. We use the Fisher's exact test to assess the statistical significance of the LD estimator. By this test, each SNP pair is characterized as associated, independent, or not-statistically-significant. We set limits on the maximum acceptable proportion of independent pairs within all blocks and search for the partitioning with maximal proportion of associated SNP pairs. Essentially, this model is reduced to a constrained optimization problem, the solution of which is obtained by iterating a dynamic programming algorithm.</p> <p>Results</p> <p>In comparison with other methods, our algorithm reports blocks of larger average size. Nevertheless, the haplotype diversity within the blocks is captured by a small number of tagSNPs. Resampling HapMap haplotypes under a block-based model of recombination showed that our algorithm is robust in reproducing the same partitioning for recombinant samples. Our algorithm performed better than previously reported models in a case-control association study aimed at mapping a single locus trait, based on simulation results that were evaluated by a block-based statistical test. Compared to methods of haplotype block partitioning, we performed best on detection of recombination hotspots.</p> <p>Conclusion</p> <p>Our proposed method divides chromosomes into the regions within which allelic associations of SNP pairs are maximized. This approach presents a native design for dimension reduction in genome-wide association studies. Our results show that the pairwise allelic association of SNPs can describe various features of genomic variation, in particular recombination hotspots.</p

    Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens

    Get PDF
    Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1) and Plasmodium vivax circumsporozoite protein (pvcsp). Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44) and the complete gene of pvcsp (n = 47) from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines
    corecore