58 research outputs found

    Syrian hamster dermal cell immortalization is not enhanced by power line frequency electromagnetic field exposure

    Get PDF
    Several epidemiological studies have suggested associations between exposure to residential power line frequency electromagnetic fields and childhood leukaemia, and between occupational exposure and adult leukaemia. A variety of in vitro studies have provided limited supporting evidence for the role of such exposures in cancer induction in the form of acknowledged cellular end points, such as enhanced mutation rate and cell proliferation, though the former is seen only with extremely high flux density exposure or with co-exposure to ionizing radiation. However, in vitro experiments on a scale large enough to detect rare cancer-initiating events, such as primary cell immortalization following residential level exposures, have not thus far been reported. In this study, large cultures of primary Syrian hamster dermal cells were continuously exposed to power line frequency electromagnetic fields of 10 100 and 1000 μT for 60 h, with and without prior exposure to a threshold (1.5 Gy), or sub-threshold (0.5 Gy), immortalizing dose of ionizing radiation. Electromagnetic field exposure alone did not immortalize these cells at a detectable frequency (≥ 1 × 10−7); furthermore, such exposure did not enhance the frequency of ionizing radiation-induced immortalization. © 1999 Cancer Research Campaig

    The clinical features of the piriformis syndrome: a systematic review

    Get PDF
    Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis

    Differential effects of saturated versus unsaturated dietary fatty acids on weight gain and myocellular lipid profiles in mice

    Get PDF
    OBJECTIVE: In conditions of continuous high-fat (HF) intake, the degree of saturation of the fatty acids (FAs) in the diet might have a crucial role in the onset of obesity and its metabolic complications. In particular, the FA composition of the diet might influence the storage form of lipids inside skeletal muscle. The aim of the present study was to examine whether the FA composition of HF diets differentially affects weight gain and accumulation of myocellular triacylglycerol (TAG) and diacylglycerol (DAG). Furthermore, we examined whether the FA composition of the diet was reflected in the composition of the myocellular lipid intermediates.DESIGN: C57Bl6 mice were fed HF diets (45% energy) mainly containing palm oil (PO), cocoa butter (CB), olive oil (OO) or safflower oil (SO; n=6 per group) for 8 weeks. A low-fat diet (10% energy, PO) was used as control. Body weight was monitored weekly. At the end of the dietary intervention, myocellular TAG and DAG content and profiles were measured.RESULTS: We here show that HF_CB prevented weight gain after 8 weeks of HF feeding. Furthermore, the HF diet rich in SO prevented the accumulation of both myocellular TAG and DAG. Interestingly, the FA composition of DAG and TAG in skeletal muscle was a reflection of the dietary FA composition.CONCLUSION: Already after a relatively short period, the dietary FA intake relates to the FA composition of the lipid metabolites in the muscle. A diet rich in polyunsaturated FAs seems to prevent myocellular lipid accumulation.<br/

    Step-Wise Loss of Bacterial Flagellar Torsion Confers Progressive Phagocytic Evasion

    Get PDF
    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria

    Detection of copy number variations in rice using array-based comparative genomic hybridization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variations (CNVs) can create new genes, change gene dosage, reshape gene structures, and modify elements regulating gene expression. As with all types of genetic variation, CNVs may influence phenotypic variation and gene expression. CNVs are thus considered major sources of genetic variation. Little is known, however, about their contribution to genetic variation in rice.</p> <p>Results</p> <p>To detect CNVs, we used a set of NimbleGen whole-genome comparative genomic hybridization arrays containing 718,256 oligonucleotide probes with a median probe spacing of 500 bp. We compiled a high-resolution map of CNVs in the rice genome, showing 641 CNVs between the genomes of the rice cultivars 'Nipponbare' (from <it>O. sativa </it>ssp. <it>japonica</it>) and 'Guang-lu-ai 4' (from <it>O. sativa </it>ssp. <it>indica</it>). The CNVs identified vary in size from 1.1 kb to 180.7 kb, and encompass approximately 7.6 Mb of the rice genome. The largest regions showing copy gain and loss are of 37.4 kb on chromosome 4, and 180.7 kb on chromosome 8. In addition, 85 DNA segments were identified, including some genic sequences. Contracted genes greatly outnumbered duplicated ones. Many of the contracted genes corresponded to either the same genes or genes involved in the same biological processes; this was also the case for genes involved in disease and defense.</p> <p>Conclusion</p> <p>We detected CNVs in rice by array-based comparative genomic hybridization. These CNVs contain known genes. Further discussion of CNVs is important, as they are linked to variation among rice varieties, and are likely to contribute to subspecific characteristics.</p

    Universal BRCA1/BRCA2 Testing for Ovarian Cancer Patients is Welcomed, but with Care: How Women and Staff Contextualize Experiences of Expanded Access

    Get PDF
    Decreasing costs of genetic testing and advances in treatment for women with cancer with germline BRCA1/BRCA2\textit{BRCA1/BRCA2} mutations have heralded more inclusive genetic testing programs. The Genetic Testing in Epithelial Ovarian Cancer (GTEOC) Study, investigates the feasibility and acceptability of offering genetic testing to all women recently diagnosed with epithelial ovarian cancer (universal genetic testing or UGT). Study participants and staff were interviewed to: (i) assess the impact of UGT (ii) integrate patients' and staff perspectives in the development of new UGT programs. Semi-structured interviews were conducted with twelve GTEOC Study participants and five members of staff involved in recruiting them. The transcripts were transcribed verbatim\textit{verbatim} and analyzed using Interpretative Phenomenological Analysis. There are two super-ordinate themes: motivations and influences around offers of genetic testing\textit{motivations and influences around offers of genetic testing} and impacts of genetic testing in ovarian cancer patients\textit{impacts of genetic testing in ovarian cancer patients}. A major finding is that genetic testing is contextualized within the broader experiences of the women; the impact of UGT was minimized in comparison with the ovarian cancer diagnosis. Women who consent to UGT are motivated by altruism and by their relatives' influence, whilst those who decline are often considered overwhelmed or fearful. Those without a genetic mutation are usually reassured by this result, whilst those with a genetic mutation must negotiate new uncertainties and responsibilities towards their families. Our findings suggest that UGT in this context is generally acceptable to women. However, the period shortly after diagnosis is a sensitive time and some women are emotionally overburdened. UGT is considered a 'family affair' and staff must acknowledge this.This work was supported by Target Ovarian Cancer grant number T005MT. Marc Tischkowitz was supported by funding from the European Union Seventh Framework Program (2007Y2013)/ European Research Council (Grant No. 310018)

    Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture

    Get PDF
    Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5–15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution1. If several cloned R genes were available, it would be possible to pyramid R genes2 in a crop, which might provide more durable resistance1. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore