267 research outputs found

    Persistent Hyperdopaminergia Decreases the Peak Frequency of Hippocampal Theta Oscillations during Quiet Waking and REM Sleep

    Get PDF
    Long-term changes in dopaminergic signaling are thought to underlie the pathophysiology of a number of psychiatric disorders. Several conditions are associated with cognitive deficits such as disturbances in attention processes and learning and memory, suggesting that persistent changes in dopaminergic signaling may alter neural mechanisms underlying these processes. Dopamine transporter knockout (DAT-KO) mice exhibit a persistent five-fold increase in extracellular dopamine levels. Here, we demonstrate that DAT-KO mice display lower hippocampal theta oscillation frequencies during baseline periods of waking and rapid-eye movement sleep. These altered theta oscillations are not reversed via treatment with the antidopaminergic agent haloperidol. Thus, we propose that persistent hyperdopaminergia, together with secondary alterations in other neuromodulatory systems, results in lower frequency activity in neural systems responsible for various cognitive processes

    The role of GRK6 in animal models of Parkinson's Disease and L-DOPA treatment

    Get PDF
    G protein-coupled Receptor Kinase 6 (GRK6) belongs to a family of kinases that phosphorylate GPCRs. GRK6 levels were found to be altered in Parkinson's Disease (PD) and D2 dopamine receptors are supersensitive in mice lacking GRK6 (GRK6-KO mice). To understand how GRK6 modulates the behavioral manifestations of dopamine deficiency and responses to L-DOPA, we used three approaches to model PD in GRK6-KO mice: 1) the cataleptic response to haloperidol; 2) introducing GRK6 mutation to an acute model of absolute dopamine deficiency, DDD mice; 3) hemiparkinsonian 6-OHDA model. Furthermore, dopamine-related striatal signaling was analyzed by assessing the phosphorylation of AKT/GSK3Ξ² and ERK1/2. GRK6 deficiency reduced cataleptic behavior, potentiated the acute effect of L-DOPA in DDD mice, reduced rotational behavior in hemi-parkinsonian mice, and reduced abnormal involuntary movements induced by chronic L-DOPA. These data indicate that approaches to regulate GRK6 activity could be useful in modulating both therapeutic and side-effects of L-DOPA

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    The 5-HTTLPR polymorphism of the serotonin transporter gene and short term behavioral response to methylphenidate in children with ADHD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animal models of ADHD suggest that the paradoxical calming effect of methylphenidate on motor activity could be mediated through its action on serotonin transmission. In this study, we have investigated the relationship between the 5-HTTLPR polymorphism in the serotonin transporter gene (<it>SLC6A4</it>) and the response of ADHD relevant behaviors with methylphenidate treatment.</p> <p>Methods</p> <p>Patients between ages 6-12 (n = 157) were assessed with regard to their behavioral response to methylphenidate (0.5 mg/kg/day) using a 2-week prospective within-subject, placebo-controlled (crossover) trial. The children were then genotyped with regard to the triallelic 5-HTTLPR polymorphism in the <it>SLC6A4 </it>gene. Main outcome measure: Conners' Global Index for parents (CGI-Parents) and teachers (CGI-Teachers) at baseline and at the end of each week of treatment with placebo and methylphenidate. For both outcome measurements, we used a mixed model analysis of variance to determine gene, treatment and gene Γ— treatment interaction effects.</p> <p>Results</p> <p>Mixed model analysis of variance revealed a gene Γ— treatment interaction for CGI-Parents but not for CGI-Teachers. Children homozygous for the lower expressing alleles (<it>s+l<sub>G </sub>= s'</it>) responded well to placebo and did not derive additional improvement with methylphenidate compared to children carrying a higher expressing allele (<it>l<sub>A</sub></it>). No genotype main effects on either CGI-Parents or CGI-teachers were observed.</p> <p>Conclusions</p> <p>A double blind placebo-controlled design was used to assess the behavioral effects of methylphenidate in relation to the triallelic 5-HTTLPR polymorphism of the <it>SLC6A4 </it>gene in children with ADHD. This polymorphism appears to modulate the behavioral response to methylphenidate in children with ADHD as assessed in the home environment by parents. Further investigation is needed to assess the clinical implications of this finding.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00483106</p

    Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>

    Get PDF
    Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling

    Overstimulation of NMDA Receptors Impairs Early Brain Development in vivo

    Get PDF
    BACKGROUND: Brains of patients with schizophrenia show both neurodevelopmental and functional deficits that suggest aberrant glutamate neurotransmission. Evidence from both genetic and pharmacological studies suggests that glutamatergic dysfunction, particularly with involvement of NMDARs, plays a critical role in the pathophysiology of schizophrenia. However, how prenatal disturbance of NMDARs leads to schizophrenia-associated developmental defects is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Glutamate transporter GLAST/GLT1 double-knockout (DKO) mice carrying the NMDA receptor 1 subunit (NR1)-null mutation were generated. Bouin-fixed and paraffin-embedded embryonic day 16.5 coronal brain sections were stained with hematoxylin, anti-microtubule-associated protein 2 (MAP2), and anti-L1 antibodies to visualize cortical, hippocampal, and olfactory bulb laminar structure, subplate neurons, and axonal projections. NR1 deletion in DKO mice almost completely rescued multiple brain defects including cortical, hippocampal, and olfactory bulb disorganization and defective corticothalamic and thalamocortical axonal projections. CONCLUSIONS/SIGNIFICANCE: Excess glutamatergic signaling in the prenatal stage compromises early brain development via overstimulation of NMDARs

    Dysbindin Promotes the Post-Endocytic Sorting of G Protein-Coupled Receptors to Lysosomes

    Get PDF
    BackgroundDysbindin, a cytoplasmic protein long known to function in the biogenesis of specialized lysosome-related organelles (LROs), has been reported to reduce surface expression of D2 dopamine receptors in neurons. Dysbindin is broadly expressed, and dopamine receptors are members of the large family of G protein-coupled receptors (GPCRs) that function in diverse cell types. Thus we asked if dysbindin regulates receptor number in non-neural cells, and further investigated the cellular basis of this regulation.Methodology/principal findingsWe used RNA interference to deplete endogenous dysbindin in HEK293 and HeLa cells, then used immunochemical and biochemical methods to assess expression and endocytic trafficking of epitope-tagged GPCRs. Dysbindin knockdown up-regulated surface expression of D2 receptors compared to D1 receptors, as reported previously in neurons. This regulation was not mediated by a change in D2 receptor endocytosis. Instead, dysbindin knockdown specifically reduced the subsequent trafficking of internalized D2 receptors to lysosomes. This distinct post-endocytic sorting function explained the minimal effect of dysbindin depletion on D1 receptors, which recycle efficiently and traverse the lysosomal pathway to only a small degree. Moreover, dysbindin regulated the delta opioid receptor, a more distantly related GPCR that is also sorted to lysosomes after endocytosis. Dysbindin was not required for lysosomal trafficking of all signaling receptors, however, as its depletion did not detectably affect down-regulation of the EGF receptor tyrosine kinase. Dysbindin co-immunoprecipitated with GASP-1 (or GPRASP-1), a cytoplasmic protein shown previously to modulate lysosomal trafficking of D2 dopamine and delta opioid receptors by direct interaction, and with HRS that is a core component of the conserved ESCRT machinery mediating lysosome biogenesis and sorting.Conclusions/significanceThese results identify a distinct, and potentially widespread function of dysbindin in promoting the sorting of specific GPCRs to lysosomes after endocytosis

    G Protein Subunit Dissociation and Translocation Regulate Cellular Response to Receptor Stimulation

    Get PDF
    We examined the role of G proteins in modulating the response of living cells to receptor activation. The response of an effector, phospholipase C-Ξ² to M3 muscarinic receptor activation was measured using sensors that detect the generation of inositol triphosphate or diacylglycerol. The recently discovered translocation of GΞ²Ξ³ from plasma membrane to endomembranes on receptor activation attenuated this response. A FRET based G protein sensor suggested that in contrast to translocating GΞ²Ξ³, non-translocating GΞ²Ξ³ subunits do not dissociate from the Ξ±q subunit on receptor activation leading to prolonged retention of the heterotrimer state and an accentuated response. M3 receptors with tethered Ξ±q induced differential responses to receptor activation in cells with or without an endogenous translocation capable Ξ³ subunit. G protein heterotrimer dissociation and Ξ²Ξ³ translocation are thus unanticipated modulators of the intensity of a cell's response to an extracellular signal

    Transgenic mouse models for ADHD

    Get PDF

    Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system.</p> <p>Methods</p> <p>We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data.</p> <p>Results</p> <p>We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct <it>in silico </it>experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to experimental data. Finally, we study how the properties of the the serotonin transporter and the autoreceptors give rise to the time courses of extracellular serotonin in various projection regions after a dose of fluoxetine.</p> <p>Conclusions</p> <p>Serotonergic systems must respond robustly to important biological signals, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of the serotonin transporters and the serotonin autoreceptors. Many difficult questions remain in order to fully understand how serotonin biochemistry affects serotonin electrophysiology and vice versa, and how both are changed in the presence of selective serotonin reuptake inhibitors. Mathematical models are useful tools for investigating some of these questions.</p
    • …
    corecore