1,012 research outputs found
Randomized Dynamical Decoupling Techniques for Coherent Quantum Control
The need for strategies able to accurately manipulate quantum dynamics is
ubiquitous in quantum control and quantum information processing. We
investigate two scenarios where randomized dynamical decoupling techniques
become more advantageous with respect to standard deterministic methods in
switching off unwanted dynamical evolution in a closed quantum system: when
dealing with decoupling cycles which involve a large number of control actions
and/or when seeking long-time quantum information storage. Highly effective
hybrid decoupling schemes, which combine deterministic and stochastic features
are discussed, as well as the benefits of sequentially implementing a
concatenated method, applied at short times, followed by a hybrid protocol,
employed at longer times. A quantum register consisting of a chain of spin-1/2
particles interacting via the Heisenberg interaction is used as a model for the
analysis throughout.Comment: 7 pages, 2 figures. Replaced with final version. Invited talk
delivered at the XXXVI Winter Colloquium on the Physics of Quantum
Electronics, Snowbird, Jan 2006. To be published in J. Mod. Optic
Geometric quantum computation with NMR
The experimental realisation of the basic constituents of quantum information
processing devices, namely fault-tolerant quantum logic gates, requires
conditional quantum dynamics, in which one subsystem undergoes a coherent
evolution that depends on the quantum state of another subsystem. In
particular, the subsystem may acquire a conditional phase shift. Here we
consider a novel scenario in which this phase is of geometric rather than
dynamical origin. As the conditional geometric (Berry) phase depends only on
the geometry of the path executed it is resilient to certain types of errors,
and offers the potential of an intrinsically fault-tolerant way of performing
quantum gates. Nuclear Magnetic Resonance (NMR) has already been used to
demonstrate both simple quantum information processing and Berry's phase. Here
we report an NMR experiment which implements a conditional Berry phase, and
thus a controlled phase shift gate. This constitutes the first elementary
geometric quantum computation.Comment: Minor additions at request of referees. 4 pages revtex including 2
figures (1 eps). Nature in pres
The Significance of the -Numerical Range and the Local -Numerical Range in Quantum Control and Quantum Information
This paper shows how C-numerical-range related new strucures may arise from
practical problems in quantum control--and vice versa, how an understanding of
these structures helps to tackle hot topics in quantum information.
We start out with an overview on the role of C-numerical ranges in current
research problems in quantum theory: the quantum mechanical task of maximising
the projection of a point on the unitary orbit of an initial state onto a
target state C relates to the C-numerical radius of A via maximising the trace
function |\tr \{C^\dagger UAU^\dagger\}|. In quantum control of n qubits one
may be interested (i) in having U\in SU(2^n) for the entire dynamics, or (ii)
in restricting the dynamics to {\em local} operations on each qubit, i.e. to
the n-fold tensor product SU(2)\otimes SU(2)\otimes >...\otimes SU(2).
Interestingly, the latter then leads to a novel entity, the {\em local}
C-numerical range W_{\rm loc}(C,A), whose intricate geometry is neither
star-shaped nor simply connected in contrast to the conventional C-numerical
range. This is shown in the accompanying paper (math-ph/0702005).
We present novel applications of the C-numerical range in quantum control
assisted by gradient flows on the local unitary group: (1) they serve as
powerful tools for deciding whether a quantum interaction can be inverted in
time (in a sense generalising Hahn's famous spin echo); (2) they allow for
optimising witnesses of quantum entanglement. We conclude by relating the
relative C-numerical range to problems of constrained quantum optimisation, for
which we also give Lagrange-type gradient flow algorithms.Comment: update relating to math-ph/070200
Fourier Magnetic Imaging with Nanoscale Resolution and Compressed Sensing Speed-up using Electronic Spins in Diamond
Optically-detected magnetic resonance using Nitrogen Vacancy (NV) color
centres in diamond is a leading modality for nanoscale magnetic field imaging,
as it provides single electron spin sensitivity, three-dimensional resolution
better than 1 nm, and applicability to a wide range of physical and biological
samples under ambient conditions. To date, however, NV-diamond magnetic imaging
has been performed using real space techniques, which are either limited by
optical diffraction to 250 nm resolution or require slow, point-by-point
scanning for nanoscale resolution, e.g., using an atomic force microscope,
magnetic tip, or super-resolution optical imaging. Here we introduce an
alternative technique of Fourier magnetic imaging using NV-diamond. In analogy
with conventional magnetic resonance imaging (MRI), we employ pulsed magnetic
field gradients to phase-encode spatial information on NV electronic spins in
wavenumber or k-space followed by a fast Fourier transform to yield real-space
images with nanoscale resolution, wide field-of-view (FOV), and compressed
sensing speed-up.Comment: 31 pages, 10 figure
The clinical features of the piriformis syndrome: a systematic review
Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis
Coherent Control of Quantum Dynamics with Sequences of Unitary Phase-Kick Pulses
Coherent optical control schemes exploit the coherence of laser pulses to
change the phases of interfering dynamical pathways in order to manipulate
dynamical processes. These active control methods are closely related to
dynamical decoupling techniques, popularized in the field of Quantum
Information. Inspired by Nuclear Magnetic Resonance (NMR) spectroscopy,
dynamical decoupling methods apply sequences of unitary operations to modify
the interference phenomena responsible for the system dynamics thus also
belonging to the general class of coherent control techniques. Here we review
related developments in the fields of coherent optical control and dynamical
decoupling, with emphasis on control of tunneling and decoherence in general
model systems. Considering recent experimental breakthroughs in the
demonstration of active control of a variety of systems, we anticipate that the
reviewed coherent control scenarios and dynamical decoupling methods should
raise significant experimental interest.Comment: 52 pages, 7 figure
30 days wild: development and evaluation of a large-scale nature engagement campaign to improve well-being
There is a need to increase people’s engagement with and connection to nature, both for human well-being and the conservation of nature itself. In order to suggest ways for people to engage with nature and create a wider social context to normalise nature engagement, The Wildlife Trusts developed a mass engagement campaign, 30 Days Wild. The campaign asked people to engage with nature every day for a month. 12,400 people signed up for 30 Days Wild via an online sign-up with an estimated 18,500 taking part overall, resulting in an estimated 300,000 engagements with nature by participants. Samples of those taking part were found to have sustained increases in happiness, health, connection to nature and pro-nature behaviours. With the improvement in health being predicted by the improvement in happiness, this relationship was mediated by the change in connection to nature
Reconsidering Association Testing Methods Using Single-Variant Test Statistics as Alternatives to Pooling Tests for Sequence Data with Rare Variants
Association tests that pool minor alleles into a measure of burden at a locus have been proposed for case-control studies using sequence data containing rare variants. However, such pooling tests are not robust to the inclusion of neutral and protective variants, which can mask the association signal from risk variants. Early studies proposing pooling tests dismissed methods for locus-wide inference using nonnegative single-variant test statistics based on unrealistic comparisons. However, such methods are robust to the inclusion of neutral and protective variants and therefore may be more useful than previously appreciated. In fact, some recently proposed methods derived within different frameworks are equivalent to performing inference on weighted sums of squared single-variant score statistics. In this study, we compared two existing methods for locus-wide inference using nonnegative single-variant test statistics to two widely cited pooling tests under more realistic conditions. We established analytic results for a simple model with one rare risk and one rare neutral variant, which demonstrated that pooling tests were less powerful than even Bonferroni-corrected single-variant tests in most realistic situations. We also performed simulations using variants with realistic minor allele frequency and linkage disequilibrium spectra, disease models with multiple rare risk variants and extensive neutral variation, and varying rates of missing genotypes. In all scenarios considered, existing methods using nonnegative single-variant test statistics had power comparable to or greater than two widely cited pooling tests. Moreover, in disease models with only rare risk variants, an existing method based on the maximum single-variant Cochran-Armitage trend chi-square statistic in the locus had power comparable to or greater than another existing method closely related to some recently proposed methods. We conclude that efficient locus-wide inference using single-variant test statistics should be reconsidered as a useful framework for devising powerful association tests in sequence data with rare variants
How Preussag became TUI : kissing too many toads can make you a toad
In the period 1997-2004, Preussag, a diversified German conglomerate of old economy businesses, changed itself into TUI, a company focused almost entirely on tourism and logistics. This paper analyzes how this strategy was executed and how it contributed to Preussag’s underperformance of the stock market. We collect 417 announcements of acquisitions, financial disclosures and other news and disentangle the impact of different parts of the company’s strategy. We find that only the divestitures created value, that the strategy to invest in tourism destroyed value, and that the acquisition premiums Preussag paid were mostly unjustified. Bad luck like the events of September 11, 2001 cannot account for the poor performance of the stock. Poor management resulted from poor governance, combining a state-owned bank as the largest shareholder, board interlocks, and insufficient managerial incentives. The case shows how divestiture programs increase the liquid resources available to management beyond free operating cash flows and casts doubt on the positive governance role of institutional blockholders
- …