194 research outputs found

    Primordial Black Holes: sirens of the early Universe

    Full text link
    Primordial Black Holes (PBHs) are, typically light, black holes which can form in the early Universe. There are a number of formation mechanisms, including the collapse of large density perturbations, cosmic string loops and bubble collisions. The number of PBHs formed is tightly constrained by the consequences of their evaporation and their lensing and dynamical effects. Therefore PBHs are a powerful probe of the physics of the early Universe, in particular models of inflation. They are also a potential cold dark matter candidate.Comment: 21 pages. To be published in "Quantum Aspects of Black Holes", ed. X. Calmet (Springer, 2014

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres

    High-efficiency exfoliation of large-area mono-layer graphene oxide with controlled dimension

    Get PDF
    In this work, we introduce a novel and facile method of exfoliating large-area, single-layer graphene oxide using a shearing stress. The shearing stress reactor consists of two concentric cylinders, where the inner cylinder rotates at controlled speed while the outer cylinder is kept stationary. We found that the formation of Taylor vortex flow with shearing stress can effectively exfoliate the graphite oxide, resulting in large-area single- or few-layer graphene oxide (GO) platelets with high yields (>90%) within 60 min of reaction time. Moreover, the lateral size of exfoliated GO sheets was readily tunable by simply controlling the rotational speed of the reactor and reaction time. Our approach for high-efficiency exfoliation of GO with controlled dimension may find its utility in numerous industrial applications including energy storage, conducting composite, electronic device, and supporting frameworks of catalyst

    The effect of low temperature and low light intensity on nutrient removal from municipal wastewater by purple phototrophic bacteria (PPB)

    Get PDF
    There has been increased interest in alternative wastewater treatment systems to improve nutrient recovery while achieving acceptable TCOD, TN, and TP discharge limits. Purple phototrophic bacteria (PPB) have a high potential for simultaneous nutrient removal and recovery from wastewater. This study evaluated the PPB performance and its growth at different operating conditions with a focus on HRT and light optimization using a continuous-flow membrane photobioreactor (PHB). Furthermore, the effect of low temperature on PPB performance was assessed to evaluate the PPB’s application in cold-climate regions. In order to evaluate PPB performance, TCOD, TN, and TP removal efficiencies and Monod kinetic parameters were analyzed at different HRTs (36, 18, and 9 h), at temperatures of 22°C and 11°C and infrared (IR) light intensities of 50, 3, and 1.4 Wm-2. The results indicated that low temperature had no detrimental impact on PPB’s performance. The photobioreactor (PHB) with cold-enriched PPB has a high potential to treat municipal wastewater with effluent concentrations below target limits (TCOD˂ 50mgL-1, TN˂10 mgL-1, and TP˂1 mgL-1). Monod kinetic parameters Ks, K, Y, and Kd were estimated at 20-29 mgCODL-1, 1.6-1.9 mgCOD(mgVSS.d)-1, 0.47 mgVSS mgCOD-1, and 0.07-0.08 d-1 at temperatures of 11°C-22°C respectively. The results of the steady-state mass balances showed TCOD, TN, and TP recoveries of 80%-86%, which reflected PPB’s substrate and nutrient assimilation. Previous studies utilized high light intensities (˃ 50 Wm-2) to provide PPB with the maximum energy required for its growth. In order to enable the PPB technology as a practical approach in municipal wastewater treatment, light intensity must be optimized. Based on the literature, there is no study on PPB performance at low light intensities using a continuous-flow membrane photobioreactor. The effect of low light intensities of 3, and 1.4 Wm-2 on PPB performance was addressed in this study. The results indicated that PPB at a light intensity as low as 1.4 Wm-2 were able to treat municipal wastewater with effluent concentrations below above-mentioned target limits. Light intensity (1-50 Wm-2) had no detrimental impact on PPB performance and Monod kinetic parameters. This study showed that the optimized light intensity required for municipal wastewater treatment with PPB is significantly lower than previously indicated in the literature. The energy consumptions attributed to PHB’s illumination of 3, and 1.4 Wm-2 were determined to be 1.44, and 0.67 kWh/m3 which is significantly lower than previous studies (˃ 24 kWh/m3)

    The effect of pyramiding Phytophthora infestans resistance genes RPi-mcd1 and RPi-ber in potato

    Get PDF
    Despite efforts to control late blight in potatoes by introducing Rpi-genes from wild species into cultivated potato, there are still concerns regarding the durability and level of resistance. Pyramiding Rpi-genes can be a solution to increase both durability and level of resistance. In this study, two resistance genes, RPi-mcd1 and RPi-ber, introgressed from the wild tuber-bearing potato species Solanum microdontum and S. berthaultii were combined in a diploid S. tuberosum population. Individual genotypes from this population were classified after four groups, carrying no Rpi-gene, with only RPi-mcd1, with only RPi-ber, and a group with the pyramided RPi-mcd1 and RPi-ber by means of tightly linked molecular markers. The levels of resistance between the groups were compared in a field experiment in 2007. The group with RPi-mcd1 showed a significant delay to reach 50% infection of the leaf area of 3 days. The group with RPi-ber showed a delay of 3 weeks. The resistance level in the pyramid group suggested an additive effect of RPi-mcd1 with RPi-ber. This suggests that potato breeding can benefit from combining individual Rpi-genes, irrespective of the weak effect of RPi-mcd1 or the strong effect of RPi-ber

    Differential regulation of iron chelator-induced IL-8 synthesis via MAP kinase and NF-κB in immortalized and malignant oral keratinocytes

    Get PDF
    Abstract Background Interleukin-8 (IL-8) is a cytokine that plays an important role in tumor progression in a variety of cancer types; however, its regulation is not well understood in oral cancer cells. In the present study, we examined the expression and mechanism of IL-8 in which it is involved by treating immortalized (IHOK) and malignant human oral keratinocytes (HN12) cells with deferoxamine (DFO). Methods IL-8 production was measured by an enzyme-linked immunoabsorbent assay and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Electrophoretic mobility shift assays was used to determine NF-κB binding activity. Phosphorylation and degradation of the I-κB were analyized by Western blot. Results IHOK cells incubated with DFO showed increased expression of IL-8 mRNA, as well as higher release of the IL-8 protein. The up-regulation of DFO-induced IL-8 expression was higher in IHOK cells than in HN12 cells and was concentration-dependent. DFO acted additively with IL-1β to strongly up-regulate IL-8 in IHOK cells but not in HN12 cells. Accordingly, selective p38 and ERK1/2 inhibitors for both kinases abolished DFO-induced IL-8 expression in both IHOK and HN12 cells. Furthermore, DFO induced the degradation and phosphorylation of IκB, and activation of NF-κB. The IL-8 inducing effects of DFO were mediated by a nitric oxide donor (S-nitrosoglutathione), and by pyrrolidine dithiocarbamate, an inhibitor of NF-κB, as well as by wortmannin, which inhibits the phosphatidylinositol 3-kinase-dependent activation of NAD(P)H oxidase. Conclusion This results demonstrate that DFO-induced IL-8 acts via multiple signaling pathways in immortalized and malignant oral keratinocytes, and that the control of IL-8 may be an important target for immunotheraphy against human oral premalignant lesions.</p

    Addressing the needs of children with disabilities experiencing disaster or terrorism

    Get PDF
    Purpose of review: This paper reviews the empirical literature on psychosocial factors relating to children with disabilities in the context of disaster or terrorism. Recent findings: Research indicates individuals with disabilities experience increased exposure to hazards due to existing social disparities and barriers associated with disability status. However, studies on the psychological effects of disaster/terrorism on children with preexisting disabilities are exceedingly few and empirical evidence of the effectiveness of trauma-focused therapies for this population is limited. Secondary adversities, including social stigma and health concerns, also compromise the recovery of these children post-disaster/terrorism. Schools and teachers appear to be particularly important in the recovery of children with disabilities to disaster. Disasters, terrorism, and war all contribute to the incidence of disability, as well as disproportionately affect children with preexisting disabilities. Summary: Disaster preparedness interventions and societal changes are needed to decrease the disproportionate environmental and social vulnerability of children with disabilities to disaster and terrorism
    corecore