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Abstract
Background: This article reports on an analysis of errors that were displayed by students who studied mathematics
in Chemical Engineering in derivatives of mostly trigonometric functions. The poor performance of these students
triggered this study. The researcher (lecturer) works in a mathematics support programme to enhance students’
understanding of mathematics. The purpose of this study was to identify errors and their origins when students did
calculations in derivatives of trigonometric functions. The participants of this study were a group of thirty students
who were registered for Mathematics in a university of technology in Western Cape, South Africa. The researcher
used a qualitative case study approach and collected data from students’ written work. This study used Dubinsky’s
(1991) APOS Theory (Actions, Processes, Objects, and Schemas) to classify errors into categories and analyse the
data collected.

Results: Errors displayed by students were conceptual and procedural; there were also errors of interpretation
and linear extrapolation. Conceptual errors showed a failure to grasp the concepts in a problem and a failure
to appreciate the relationships in a problem. Procedural errors occurred when students failed to carry out
manipulations or algorithms, even if concepts were understood. Interpretation errors occurred when students
wrongly interpreted a concept due to over-generalisation of the existing schema. Linear extrapolation errors
occurred when students over-generalised the property f(a + b) = f(a) + f(b), which applies only when f is a linear
function, to the form f(a * b) = f(a) * f(b), where f is any function and * any operation. The findings revealed that the
participants were not familiar with basic operational signs such as addition, subtraction, multiplication and division
of trigonometric functions. The participants demonstrated poor ability to simplify once they had completed
differentiation.

Conclusions: This study recommends the strategy of focusing on elimination of errors to develop students’
understanding of derivatives of trigonometric functions. This can be done through learning activities that lead to
identification and analyses of students’ errors in classroom discussions.
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Introduction and background
This paper is part of a doctoral study conducted to ex-
plore students’ errors in derivatives of trigonometric
functions. This was to enable the researcher to establish
causes and origins of such errors to develop a means of
eliminating displayed errors. The poor performance of
South African students in mathematics at secondary
school and university is a major concern of various stake-
holders (Makgato, 2007). There are several factors that are
linked to the causes of such poor performance. Several

researchers have found that errors and misconceptions
displayed by students in their attempts to solve mathemat-
ical problems contribute to perpetuate their poor per-
formance in their learning of mathematics (Brodie, 2005,
2006 & 2010; Davis, 1984; Drews, 2005; Foster, 2007;
Hatano, 1996; Luneta & Makonye, 2010; Nesher 1987;
Olivier, 1989; Orton, 1983a; Orton, 1983b; Ryan & Williams,
2000 and Smith, DiSessa, & Rosehelle, 1993). The idea that
students develop ‘misconceptions’ has been the basis of
much of the empirical research on learning mathematics
and science for the last 15 years (Smith et al., 1993). Smith
et al. (1993) highlight that “misconceptions arise fromCorrespondence: siyepus@cput.ac.za
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students’ prior learning, either in the classroom (especially
for mathematics) or from their interaction with the physical
and social world” (p.10). They further elaborate that miscon-
ceptions can be stable and widespread among students and
such misconceptions can be strongly held and resistant to
change (ibid, p. 11). Orton (1983a) asserts that students have
problems in understanding the meaning of the derivative
when it is written as a fraction. His findings include different
types of errors displayed by students in a calculus
classroom.
This study focuses on errors displayed by students in

derivatives of trigonometric functions. In this study, stu-
dents who registered for tertiary mathematics had stud-
ied trigonometry towards the end of secondary school.
Despite this, trigonometry remains a problem for stu-
dents throughout their study of mathematics. Challenger
(2009) asserts that students claim that trigonometry is
difficult and they ‘hate’ it. They see trigonometry as a
complicated section of mathematics and are confused as
to whether they should apply triangle trigonometry, cir-
cle trigonometry and/or analytic trigonometry.
In South Africa, derivatives of trigonometric functions

are introduced to the students for the first time in their
first year in a university. In the secondary school cur-
riculum, they studied derivatives of algebraic functions
only. In their first year at university, they advance in
their learning of mathematics through their study of de-
rivatives of exponential, logarithmic and trigonometric
functions in mathematics. Based on the reviewed litera-
ture, no studies have been conducted on errors in deriva-
tives of trigonometric functions. Siyepu (2013a) presented
a paper at a national conference of the Association for
Mathematics Education of South Africa (AMESA) on stu-
dents’ interpretations in learning derivatives in a university
mathematics classroom. The focus of that paper was an in-
vestigation of students’ interpretations in their learning of
derivatives owing to errors and misconceptions they dis-
played in their solutions (Siyepu, 2013a, p. 184). This study
builds on the work of that paper as the author analyses er-
rors displayed and explores causes and origins of errors in
derivatives of trigonometric functions. Siyepu (2013b) ex-
plored students’ errors in derivatives of various functions
such as algebraic, exponential, logarithmic and trigonomet-
ric functions. Although this study (Siyepu, 2013b) investi-
gated errors in derivatives of various functions, including
trigonometric functions, there was no focus on derivatives
of trigonometric functions. As a result, there was no depth
in the analysis of data based on trigonometric functions.
Jojo (2014) explores learners’ understanding of the concept
of chain rule in the learning of calculus. Her focus is on
strategies to be used to develop relational understand-
ing of the chain rule among students, not on errors
displayed. Weber (2008) highlights that “despite the
importance of trigonometry and students’ potential

difficulties in learning it, relatively little research has
focused on this subject” (p.144).
The identification of errors might assist lecturers and

mathematics teachers to focus on the development of
pedagogical techniques that may overcome students’ dif-
ficulties in their learning of derivatives of trigonometric
functions. Brodie and Berger (2010) claim that “the no-
tion ‘misconception’ empowers lecturers, since it pro-
vides them with a way to make sense of pervasive and
persistent student errors without blaming students and
themselves” (p.170). They argue that this is particularly
the case where well-known misconceptions have been
identified in certain topics of mathematics (Brodie &
Berger, 2010). Swan (2001) argues that if lecturers become
more aware of common errors, they will be in a better
position to help students to restructure their knowledge in
the direction of more aligned mathematical knowledge.
The essence of the study was to explore errors displayed

by students in their learning of derivatives of trigonomet-
ric functions and to make some recommendations that
might enhance students’ learning of this subject. To be ex-
plicit, this study sought to answer the following questions:

� What kinds of errors are displayed by first year
university students in their learning of derivatives of
trigonometric functions?

� What are the tentative origins or causes of the
errors displayed by the students in their solutions of
derivatives of trigonometric functions?

Errors in trigonometry
Trigonometry, as a branch of mathematics that deals
with the relationships of sides and angles in triangles,
forms an important background for the solution of prob-
lems in many disciplines (Orhun, 2010). Trigonometry is
frequently used in mathematical explanations and defini-
tions of new ideas and concepts. For example, trigono-
metric ratios are used to describe the relationship of
angles and sides in a right-angled triangle. Research
studies reveal that many students have not developed
clear concepts in trigonometry and that some of them
use algebraic notation informally (Maharaj, 2008).
Orhun (2010) states that students registered for calculus

in their first year at a university perform badly in the
operations of trigonometric expressions, namely addition,
subtraction, multiplication and division. For example, stu-
dents demonstrate difficulties in the multiplication of sin
x × sin x. Orhun (2010) argues that this may be due to the
fact that there may not be much emphasis in the learning
of addition, subtraction, multiplication and division of
trigonometric functions in the secondary school curricu-
lum. This is evident from Table 1 which shows trigonom-
etry recommended in the 2011 South African curriculum
of the Department of Basic (DoBE). In addition, many
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students study the derivatives of trigonometric functions
for the first time in their first year at a university. This im-
plies they have not yet developed the schema of addition,
subtraction, multiplication and division in derivatives of
trigonometric functions. The weaknesses of students
in these operations of trigonometric functions lead to
poor manipulation of trigonometric functions when
such students are faced with trigonometric problems
that require further simplification. Table 1 shows
what is recommended in the South African secondary
school trigonometry curriculum (Department of Basic
Education DoBE 2011).
Orhun (2010) suggests that:
In order for lecturers to account for students’ sys-

tematic errors from a constructivist perspective, ana-
lysing the procedures is not sufficient, since lecturers
should analyse students’ current schemas and how
they interact with each other according to instruction
and experience. (p. 182)
Skane and Graeber (1993) claim that some errors dis-

played by students in the content of algebra, logarithms,
exponents and trigonometry are attributed to the distribu-
tive law. They further suggest that traditional instruction
is not a sufficient strategy to remediate distributive law er-
rors for some students. This applies in compound angle
formulae such as Cos(x + y) = Cos xCos y − Sin x Sin y.
The use of distributive property in an algebraic expression
familiarises students with x(a + b) = ax + bx.
Researchers such as Thompson et al. (2013) suggest

the use of a conceptual approach to teach calculus as a
better option compared to the traditional approach. The
traditional approach commonly known as the procedural
approach may be defined as lecturer-led with direct in-
struction of rules or procedures for solving problems
(Peal, 2010). The opposite end of the instructional
spectrum from the procedural approach is the concep-
tual approach. Conceptual-based instruction seeks to
provide reasons why these algorithms and formulae
work (Peal, 2010). In the conceptual approach, the em-
phasis is on the students’ learning important concepts of
mathematical connections, relationships and applications.

The rise of the conceptual approach in mathematics in-
struction is consistent with a constructivist approach to
education (Peal, 2010).

Students’ difficulties in calculus
The study of calculus, with its fundamental concepts of
limit, derivative and integral, requires an ability to
understand algebraic variables as generalised numbers
and as functionally related varying quantities (Gray,
Loud, & Sokolowski, 2009). Students’ performance in
calculus is undermined by weak basic algebraic skills of
factorisation, handling operations in directed numbers,
solving equations and poor understanding of indices
(Luneta & Makonye, 2010). They further argue that alge-
braic incompetence has a direct impact on learning cal-
culus. They suggest that lecturers should be aware of the
educational backgrounds of first year university students
in order to design learning activities that may close any
gaps that exist between matriculation and the first year
university level. Students often misunderstand the no-
tion of a function and the concept of a limit, which to-
gether, form the cornerstone of several related concepts
such as continuity, differentiability, integration and con-
vergence of sequences and series (Tarmizi, 2010).

Students’ understanding of first principles of
differentiation
The application of first principles of differentiation to
learn derivatives of various functions is a significant
component for developing the rules of differentiation
among students who intend to study advanced mathem-
atics. The first principles of differentiation are defined by

the formula f ′ xð Þ ¼ lim
h→0

f xþhð Þ−f xð Þ
h .

This formula is used to develop standard rules of dif-
ferentiation such as d

dx sinxð Þ ¼ cosx; d
dx tanxð Þ ¼ sec2x;

d
dx cosxð Þ ¼ − sinx. The formula of first principles of dif-
ferentiation is also used to develop standard derivatives
of reciprocals of the three basic trigonometric functions
mentioned above, namely, cosecant, cotangent and se-
cant. Naidoo and Naidoo (2009) state that the derivative

Table 1 Trigonometry in high school curriculum in South Africa

Grade 10 Grade 11 Grade 12

(a) Definitions of the trigonometric ratios sin θ,
cos θ and tan θ in right-angled triangles.

(a) Derive and use the identities:
Sin θ tan θ = cos θ sin2θ + cos2θ = 1.

Proof and use of the
compound angle and double
angle identities.

(b) Extend the definitions of sin θ, cos θ and
tan θ to 00 ≤ θ ≤ 3600.

(b) Derive the reduction formulae.

(c) Derive and use values of the trigonometric ratios (without
using a calculator for the special angles {θ ∈ 00; 300; 450; 600; 900}.

(c) Determine the general solution and/or
specific solutions of trigonometric equations.

(d) Define the reciprocals of trigonometric ratios. (d) Establish the sine, cosine and area rules.

Solve problems in two dimensions. Solve problems in two dimensions. Solve problems in two and
three dimensions.
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can be seen as a concept, which is built from other con-
cepts. They further argue that the derivative can be seen
as a function, a number if evaluated at a point, a limit of
the sequence of secant slopes or a rate of change. Each
advanced concept in mathematics is based on elemen-
tary concepts and cannot be grasped without a solid and
specific understanding of the elementary concepts.
Ryan (1992) indicates that most students have a lim-

ited concept image for the gradient. Tall and Vinner
(1981) define ‘concept image’ as all the cognitive struc-
tures in the individual’s mind that are associated with a
given concept. Understanding the concept image assists
students to be able to apply rules related to the concept
appropriately. For example, students tend to confuse
rules of differentiation to be applied in the following
functions (y = xn; y = xx; y = ax) when they have a limited
concept image of each function.
Ryan (1992) recommends that the development of glo-

bal ideas associated with the gradient of a straight line
should be a focus of learning before the idea of gradient
of a curve is introduced in beginner calculus. He further
elaborates that some students indicate fundamental
problems with slope as a rate of change.
According to Ryan (1992), the traditional first prin-

ciples approach has been found to be cognitively de-
manding for students who demonstrate rote learning
in their application of first principles of differenti-
ation to find derivatives. He recommends that more
time should be given to the notion of a tangent to a
curve in the first principles approach to differenti-
ation. The situation of memorising rules can foster
instrumental understanding which may leave students
without the relational understanding of what is re-
quired in order to make sense of mathematics learn-
ing (Skemp, 1976). Relational understanding does not
involve only knowing what to do, but also why, as it
includes rationalisation of the underlying mathemat-
ical relationship and properties (Choat, 1981). Instru-
mental understanding occurs when students think that
they understand something if they are able to obtain cor-
rect answers to a given category of questions without
knowing why the method works (Choat, 1981, p.18). For
instance, in a situation that involves the following (y = xn;
y = xx; y = ax), students tend to be confused where to apply
a certain rule if they have an instrumental understanding
of the rules such as power rule, logarithmic rule and expo-
nential function rule.
Maharaj (2008) claims that “the teaching implication

of identifying errors in the learning process is that before
students are required to use and manipulate algebraic
and trigonometric functions, the meanings of symbols
must be established” (p. 402). The exploration of errors
in learning derivatives of trigonometric functions is
likely to promote an understanding of special limits and

symbols that are involved in learning standard deriva-
tives of trigonometric functions.
Brodie (2010) argues that “errors make sense when

understood in relation to the current conceptual sys-
tem of the student, which is usually a more limited
version of a mature conceptual system” (p. 13). The
implication of Brodie’s (2010) argument is that lec-
turers should consider their students’ prior knowledge
in order to assess what students know and thus be
able to accommodate new knowledge. This can be
done by allowing students to write baseline assessment
tasks. Analysis of baseline assessment tasks may assist lec-
turers to identify students’ errors and their causes or ori-
gins. Correcting students’ errors of current conceptual
structures should help them to become more powerful
through increasing their understanding in a range of situa-
tions (Brodie, 2010).

Students’ understanding of the concept “derivative”
Pillay (2008), Siyepu (2013a) and Zandieh (1997a; 1997b;
2000) suggest that the concept of a derivative can be rep-
resented in many ways. Siyepu (2013a) gives examples,
namely, graphically, as the slope of a tangent line to the
curve at a point; verbally, as the instantaneous rate of
change; physically, as speed or velocity and symbolically,
as the limit of the difference quotient. The current study
focused on the symbolic representation of the derivative
that is based on an expression for the average gradient,

which is written as f ′ xð Þ ¼ lim
h→0

f xþhð Þ−f xð Þ
h . This study used

this formula to develop understanding of standard deriva-
tives of trigonometric functions. The study also intro-
duced the derivative as a rate of change with students
having to show an understanding of using the first princi-
ples of differentiation to find standard derivatives. The de-
rivative as the rate of change uses the Leibniz’s notation.

In Leibniz's notation for differentiation, the derivative of

the function f(x) is written as d f xð Þð Þ
dx . If we have a variable

representing a function, for example, if we set y = f(x), then

we can write the derivative as dy
dx.

The findings of Ubuz (2001) in her research on first
year engineering students’ understanding of tangency,
numerical calculation of gradients and the approximate
value of a function at a point through computers reveal
that students have the following misconceptions about
the derivative:

� The derivative at a point gives the function at a
point.

� The tangent equation is the derivative function.
� The derivative at a point is the tangent equation.
� The derivative at a point is the value of the tangent

equation at that point.
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The exploration of errors may assist students to ad-
dress these types of misconceptions as students and lec-
turers interact in their classroom discussions.
Calculus requires a high level of conceptual understand-

ing, yet many students struggle to make sense of differen-
tiation (Paramenswaran 2007; Siyepu, 2013a). Some
students show an inadequate understanding of the con-
cepts of function and variable (Barnes, 1995; Siyepu,
2013a). Barnes (1995) also claims that there is a lack of
awareness that a derivative is a rate of change. Uygur and
Ozdas (2005) and Siyepu (2013a) assert that the derivative
is a difficult concept for many students. They further ex-
plain that it is worse when the function considered is a
composite function. Tall (1993) indicates that “the Leibniz

notation dy
dx proves to be almost indispensable in the calcu-

lus” (p.19). Yet, it causes serious conceptual problems with
students whether it represents a fraction or a single indi-
vidual symbol (Tall, 1993, p. 19). He further explains that
one difficulty with the notion of the chain rule is the di-
lemma of whether the du can be cancelled in the equation
dy
dx ¼ dy

du � du
dx . The interpretation of chain rule does not

allow students to cancel; instead, they are expected to find
the derivative with respect to u first and find the derivative
with respect to x.

Students’ understanding of rules of differentiation
Studies of students’ difficulties with calculus topics may
offer insights into understanding misconceptions and er-
rors which are committed by students when doing cal-
culus (Clark et al., (1997); Siyepu, 2013a). Mundy (1984)
asserts that there is “a tendency of calculus students to
operate at a rote level of procedures and symbol ma-
nipulation, which is not supported by an understanding
of the concepts involved” (p.171). As a result, students
fail to use calculus strategies when dealing with non-
routine problems (Clark et al., 1997). Barnes (1995)
suggests that “students should not be taught rules for dif-
ferentiation until they have developed a good understand-
ing of what a derivative is, and a familiarity with the
relationship between a function and its derivative” (p. 4).
She further elaborates that students should explore tech-
niques on how to find and investigate derivatives of a var-
iety of different functions.
Barnes (1995) emphasises that this may help to avoid

what Ryan (1992) has described as “the rush to the rule”,
where the meaning is ignored or forgotten, and students
operate on a purely mechanical level, pushing symbols
around on paper. This suggests that teaching should
focus on making sense of mathematical symbols, signs
and formulae (Siyepu & Ralarala, 2014).
The chain rule is a calculus concept that causes diffi-

culties for many students (Jojo, 2014; Siyepu, 2013a;
Wangberg, Engelke & Karakok, 2010). The derivatives of

trigonometric functions become complicated when they
need the application of the chain rule. Literature also
shows that function composition is particularly problem-
atic for students (Engelke et al., 2005; Siyepu, 2013a).
Some students are introduced to the chain rule merely
as a rule that should be applied without much attempt
to reveal the reasons for and justification of the proced-
ure (Orton, 1983b; Siyepu, 2013a). The chain rule con-
cept, as an example of a schema, requires that students
should already be at a well-functioning schema level for
all other standard basic rules of differentiation (Clark
et al., 1997; Siyepu, 2013a). This suggests that the con-
cept of the chain rule should be introduced only when
students can operate automatically with other rules of
differentiation such as the multiple constant rule, the
sum and the difference rule, the power rule, the product
rule and the quotient rule. According to APOS Theory,
prior to the introduction of chain rule, the students
should be at a schema level for the rules mentioned
above. Due to time limitations, lecturers proceed to a
section of the chain rule without clear evidence that stu-
dents can perform independently in other prerequisite
sections, such as those mentioned above.
The literature related to studies in calculus provides

evidence that students develop more procedural than
conceptual understanding in differentiation with regard
to the application of the chain rule (Wangberg et al.,
2010). Some students fail to recognise that differentiat-
ing functions such as y = cos πx requires the use of the
chain rule (Wangberg et al., 2010).
Jojo et al. (2011) claim that “the complexity of the chain

rule deserves exploration because students struggle to
understand it and because of its importance in the calcu-
lus curriculum” (p. 337). The current study explores deriv-
atives of trigonometric functions involving all the rules of
differentiation. Uygur and Ozdas (2005) state that many
students are able to evaluate the derivative of special com-
posite functions by memorised rules, but most of them
calculate these derivatives without the conscious use of
the chain rule.
They further argue that although many students pro-

vide a general statement of the chain rule and write
down the formula, only a few of them can explain the
connection between the statement and memorised rules.
They suggest that, in teaching the concept of the chain
rule, more emphasis should be given to using the Leib-
niz notation meaningfully, to relate both special cases
and abstract cases to the general statement of the chain
rule in order to avoid such misconceptions. Uygur and
Ozdas (2005) further suggest that another important
point when teaching the chain rule is to prompt stu-
dents by relating the composition function notions to
various functions, especially abstract problem situations,
which embody the chain rule concept.
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Theoretical framework
This section discusses APOS Theory as the theoretical
framework underpinning this study. It discusses stages
of APOS Theory, genetic decomposition and genetic de-
composition for derivatives of trigonometric functions.
This study is underpinned by Dubinsky (1991) APOS

Theory. The acronym APOS stands for Action, Process,
Object and Schema. Arnon et al. (2014) state that
“APOS is a theory of how mathematical concepts can be
learned” (p.1).
Arnon et al. (2014) explain that:
APOS Theory focuses on models of what might be go-

ing on in the mind of an individual when he or she is
trying to learn a mathematical concept and uses these
models to design instructional materials and/or to evalu-
ate student successes and failures in dealing with math-
ematical problem situations. (p.1)
This study focuses on errors displayed by students in

derivatives of trigonometric functions. The stages of
APOS Theory were used to analyse the data collected.

Stages of APOS Theory
An action stage of the APOS Theory is where each step
of the learning process (transformation) needs to be per-
formed clearly and guided by external instructions
(Arnon et al., 2014, p. 4). Action is based on rules and
algorithms, where a rule is practised repeatedly until it
becomes routine; and this takes place without adequate
thinking (Brijlall & Ndlovu, 2013). In the case of trig-
onometric functions, an individual needs to know the
concept of a function first and be able to distinguish
trigonometric functions from other functions, such as al-
gebraic, exponential and logarithmic functions. At the
same time, students need to know the unique character-
istics of trigonometric functions.
The process stage of the APOS Theory is where actions

are repeated and reflected upon, the individual moves
from relying on external clues to having internal control
over them (Arnon et al., 2014, p. 4). This stage is charac-
terised by an ability to imagine carrying out the steps,
without necessarily having to perform each one expli-
citly, and being able to skip steps, as well as reverse
them. In derivatives of trigonometric functions, an indi-
vidual should know derivatives of basic trigonometric
functions without using the first principles of differenti-
ation to prove them.
An object is constructed from a process when the indi-

vidual becomes aware of the process as a totality and
realises that transformations can act on it (Dubinsky &
McDonald, 2001).
Finally, a schema for a certain mathematical concept is

an individual’s collection of actions, processes, objects
and other schemas which are linked by some general
principles to form a framework in the individual’s mind

so that may be brought to bear upon a problem situation
involving that concept. For example, in the case of deriv-
atives of trigonometric functions, an individual can apply
all the rules of differentiation to find the derivatives of
the given function (Dubinsky & McDonald, 2001).

Genetic decomposition
A genetic decomposition is a proposed standard that de-
scribes the typical structures and devices that a student
might need to construct in order to learn a specific math-
ematical concept (Arnon et al., 2014). Arnon et al. (2014)
noted that genetic decomposition starts as a proposition
based on the researchers’ experiences in the learning and
teaching of the concept, their knowledge of APOS Theory.
The understanding of any mathematical concept depends
on prior knowledge of what students have encountered
before. This prerequisite knowledge lays a foundation for
the new mathematical concept to be studied, thus linking
the new knowledge with existing knowledge.

Genetic decomposition for derivatives of trigonometric
functions
Students should explore basic knowledge of derivatives,
starting from algebraic, exponential, logarithmic and
later trigonometric functions. Students who are regis-
tered for Mathematics in their first year might not
understand derivatives of trigonometric functions if they
are not at an adequate schema level in their differenti-
ation of other various functions. For students to grasp
derivatives of trigonometric functions, they should be
able to distinguish laws, rules and notations based on
derivatives of different functions. They should be able to
see relationships in various functions and be able to
build logic in various schemas of the key derivatives of
various functions. For instance, students should be able
to recognise a situation where they have to apply differ-
ent rules of differentiation in a mathematical problem.
As this was a doctoral study, the author piloted a genetic
decomposition schema of trigonometric functions. For
more details, see Siyepu (2013b).

Research methods
This study is located within the interpretative qualitative
research paradigm. Qualitative research is an exploratory
approach, which emphasises the use of open-ended
questions and probes, giving participants an opportunity
to respond in their own words (Devetak et al., 2010).

Research participants
The research participants of the study were the thirty
students who were registered for Chemical Engineering
in an extended curriculum programme (ECP). The cur-
riculum is designed for students who are “borderline”
cases (Siyepu, 2013b). These students do not meet the
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minimum academic requirements for admission to the
main engineering stream but, based on psychometric
testing, show potential to succeed in their studies
(Siyepu, 2013b). In an ECP, students study the same con-
tent of mathematics as other students in the main engin-
eering stream, but instead of completing it within a
semester, they have to do it over a year (Siyepu, 2013b).
The way this is done is to add active learning components
to the curriculum such as group work, projects, peer work
as well as other related support work, such as how to read
the subject texts, how to solve problems and how to rep-
resent knowledge in the field (Siyepu, 2010, 241–242).
One of the researcher’s job descriptions is to assist stu-
dents who are at risk to improve their performance in the
learning of mathematics (Siyepu, 2013b).
The sample group in the study had the following

characteristics:

� They were all full time students.
� They all used English as an additional language.
� They were thirty students who enrolled for

Chemical Engineering in 2009.
� There were (16 female and 14 male) students.
� Twenty-two of the students had matriculated in

2008.
� Seven students had matriculated in 2007.
� One student had matriculated in 2006.
� Twenty-nine students had matriculated in

mathematics in South African schools.
� One was an international student with a

qualification equivalent to South African
matriculation.

� Their ages ranged from 18 to 21 years, with one
student of 25 years.

Data collection
For this study, the researcher adopted an APOS investi-
gation cycle from Dubinsky and McDonald (2001). An
APOS investigation cycle was designed to develop theor-
etical design, implementation and analysis of instruction
and to guide collection and analysis of the data.
The investigation cycle went through the steps, as

shown in Fig. 1.

This study used an APOS pedagogical approach known
as the ACE teaching cycle which consists of activities,
classroom discussions and exercises to collect data.

Activities
Students were administered formative assessments in
the form of written tasks to collect data.

Classroom discussions
Students, together with the lecturer, gathered in a lec-
ture room to discuss, argue and justify their solutions in
the form of a revision task. This created an open discus-
sion forum as a space in which students question one
another to clarify reasons for choices, while sharing in-
formation to reach consensus about the correct solution
to a mathematical problem. In discussion forum, the lec-
turer, as researcher in this study, was able to identify stu-
dents’ errors as they discussed their interpretation of the
mathematical concepts under study.

Exercises
Exercises were given to students to reinforce their under-
standing once corrections of the displayed errors in their
written tasks and classroom discussions were done. Math-
ematical problems were designed as exercises intended to
focus on the elimination of the errors displayed to en-
hance students’ understanding of the topic under study.
The following three figures show the tests given to the
students with Fig. 2 showing the first of these tests.
The second test administered consisted of three main

questions with two sub-questions in Question 1 and
three sub-questions in Questions 2 and 3. This is shown
in Fig. 3.
The third test was administered to students to test

their understanding of derivatives of trigonometric func-
tions in their application of the quotient rule and logarith-
mic differentiation. The test comprised three questions.
This is shown in Fig. 4.

Data analysis
The APOS Theory is used as a language for commu-
nication of ideas about learning. In this study, analysis
was carried out by examining students’ responses for
each item. Students’ scripts were marked and grouped

Fig. 1 Investigation cycle used in APOS Theory
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according to common errors. This study identified er-
rors as discussed below:

� Conceptual errors, according to Kiat (2005), show a
failure to grasp the concepts in a problem and a
failure to appreciate the relationships in a problem.

� Interpretation errors, according to Olivier (1989),
occur when students wrongly interpret a concept
due to over-generalisation of the already existing
schema.

� Linear extrapolation errors occur when students
over-generalise the property f(a + b) = f(a) + f(b),
which applies only when f is a linear function, to the
form f(a * b) = f(a) * f(b), where f is any function
and * any operation (Matz, 1980).

� Procedural errors, according to Kiat (2005), occur
when students fail to carry out manipulations or
algorithms, even if concepts are understood.

The data analysis paid attention to the errors displayed
by students in their calculations, and the researcher (lec-
turer) worked out tentative causes or origins of the
errors displayed in calculations. I adapted Maharaj (2013)
to develop a table of examples of what student work rep-
resents, namely, an action conception, a process concep-
tion, an object conception and a well-functioning schema.
Table 2 shows the kinds of student work that represents
an action conception, a process conception, an object con-
ception and a well-functioning schema in derivatives of
trigonometric functions.

Fig. 2 The first test given to the students in the study

Fig. 3 The second test given to the students in the study
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Results from the study
The discussion here covers different kinds of errors dis-
played by student participants in their calculations of
three tasks administered to them. The first assessment
task was to use the first principles of differentiation to
find the derivative of y = cos x.

Conceptual errors displayed by students in task 1
This section presents conceptual errors displayed by stu-
dents in task 1. For example, one student out of 30 did not
manipulate lim

h→0

− sinx sinh
h ¼ − sinx lim

h→0

sinh
h ¼ − sinx⋅1 ¼ −

sinx . She showed a problem in her understanding of spe-
cial limits. Two students wrote incorrect compound
angle formulae. For example, they wrote cos(A + B) =
cos A cos B + sin A sin B instead of cos(A + B) = cos A
cos B − sin A sin B. The error, in this instance, was to
write a plus sign instead of a minus sign between cos
A cos B and sin A sin B.

Linear extrapolation errors displayed by students in task 1
This section presents linear extrapolation errors displayed
by a student in task 1. One student out of 30 multiplied in

lim
h→0

cos xþhð Þ− cos xð Þ
h to obtain lim

h→0

cosxþ cosh− cos xð Þ
h . This reveals

poor understanding of the cosine compound angle formula.
This student did not register in his mind that the correct
formula for a cosine compound angle is cos(x + h) = cos x
cosh − sin x cos x. This student is not even at an action
stage of the APOS Theory regarding the cosine com-
pound angle formula. This might be caused by little
emphasis or no teaching of the compound angle for-
mula at secondary school level. Table 3 shows errors
displayed by students in task 1.

Conceptual errors displayed by students in task 2
Two students did not know that the derivatives of y =

tan x is dy
dx ¼ sec2x. They wrote − sec2x and sec x tan x as

the derivative of y = tan x. These students cannot recall

Fig. 4 The third test given to the students in the study

Table 2 This shows examples of what work represents stages of APOS Theory

APOS stages Description of each stage of APOS Theory Kind of student work that represents
each stage of APOS Theory

Pre-action stage This is when a student is not yet at an action stage,
where he/she is still underdeveloped to learn a concept.

For example, a student who cannot recall the
derivative of tan x.

Action stage A transformation is first conceived as an action, when it
is a reaction to stimuli which an individual perceives as
external. For example, a student who requires an explicit
expression to think about the derivative of a function.

For example, to find the derivative of f(x) = sin x,
a student who can do little more than perform the
action f′(x) = cos x is considered to have an action
understanding of the derivative of a function.

Process stage A process is a mental structure that performs the same
operation as the action but wholly in the mind of the
individual. Specifically, a student can imagine performing
transformation without executing each step explicitly.

For example, a student can perform the derivative
of the function f(x) = cos2x by rewriting this as
f(x) = cos x ⋅ cos x and apply the product rule to find
the derivative.

Object stage If one becomes aware of a process stage in totality,for
example, when a student can find the derivative of a
function by applying various actions and processes, then
we say she/he is at an object stage. This could be a
student being able to see a function as the composite of
two functions.

For example, to find the derivative of f(x) = tan2x2

requires application of a chain rule by applying the
power rule first and the derivative of a tangent function
and then lastly, the derivative of x2; the answer is
f ′ xð Þ ¼ 2 tanx2⋅ sec2x2⋅2x
⇒f ′ xð Þ ¼ 4x tanx2 sec2x2:

Schema stage If one is able to apply various actions, processes and objects
that need to be organised and linked as a coherent framework.

For example, to find the derivative of
y ¼ x3e2xþ3 ffiffiffiffiffiffiffiffiffiffi

cosx
p

:
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the derivative of a tangent function. They are at the pre-
action stage of the APOS Theory. The pre-action stage
is where students are not yet ready to study a certain
concept. This is evident by a situation where a student
cannot start even the first step of a problem correctly.
These students need repetition, or step-by-step instruc-
tion, to be able to remember the derivative of a tangent
function. One student converted sec x into 1

sinx. Another

one used incorrect identities as she wrote cotx ¼ sinx
cosx

and cscx ¼ 1
cosx , which were incorrect as the correct

identities are cotx ¼ cosx
sinx and cscx ¼ 1

sinx , respectively.
Their attempts to find the derivative of a tangent func-
tion demonstrate that they entered first year university
not yet ready to grasp derivatives of trigonometric func-
tions. They probably do not even know what to do when
they are instructed to find the derivative of a trigono-
metric function as they opt for using reciprocals and
identities. Eight students did not apply trigonometric
identities in simplification of trigonometric functions, as
shown in Fig. 5.

Interpretation errors displayed by students in task 2
One student demonstrated a poor understanding of the
constant multiple rule in his differentiation of y = 3x4.

Instead, he applied a product rule. The product rule is
correct when followed accurately, but this method is la-
borious and superfluous; hence, the more economical
rule is the constant multiple rule.

Four students treated y ¼ 4x
3

2= as if is a composite
function, which it is not. They applied the constant mul-

tiple rule and the power rule to obtain dy
dx ¼ 6x

1
2= , and

then they differentiated y = 4x again to obtain dy
dx ¼ 4 .

This error originates from an over-generalisation of the
differentiation of a composite function of trigonometric
functions, which applies only to trigonometric functions
and not to algebraic terms such as 4x. These students
might be located at an action stage of APOS Theory re-

garding composite functions. One student wrote 6x
1

2= as
equal to

ffiffiffiffiffi
6x

p
and obtained y ¼ ffiffiffiffiffi

6x
p

⋅ sinx , as is clear
from Fig. 6, then they differentiated y ¼ ffiffiffiffiffi

6x
p

sinx as the
original problem. This student did not understand that
in 6x1/2 the index 1/2 affects x only and 6x1/2 can be
written as 6

ffiffiffi
x

p
not as

ffiffiffiffiffi
6x

p
. This student might have a

problem in understanding the distributive property of
exponents. This reveals that poor conceptualisation leads
to misinterpretations during the calculation processes.
This originates from the fact that

ffiffiffi
x

p
can be written

as x1/2. This student fails to understand that in the
case of

ffiffiffiffiffi
6x

p
, the number 6 is included in the square

root. The following figure shows an example of the
student who demonstrated an interpretation error in

the differentiation of y ¼ 4x
3

2 sinx= .

One student differentiated y ¼ 4x
3

2= to obtain dy
dx ¼ 6x

1
2=

and differentiated y ¼ x
3

2= again to obtain dy
dx ¼ 3

2 x
1

2= . This

Table 3 Frequency table of students’ errors in task 1

Students’ written
work in task1

No. of linear
extrapolation
errors

No. of conceptual
errors

No
errors

Question 1 1 3 26

Fig. 5 Error in simplification of trigonometric functions
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error originates from an over-generalisation of the differ-
entiation of the composite function of trigonometric func-
tions which does not apply in algebraic terms. For
example, to differentiate y = sin x2, we have to find the de-
rivative of a sine function first as a cosine function then

we find the derivative of x2 to get dy
dx ¼ cos2x . Alterna-

tively, this might be evidence of a lack of a well-developed
composite function schema. The same student also wrote

that the derivative of y = sec2x4 is dy
dx ¼ tan x4ð Þ4x3 . This

originates from the fact that the derivative of y = tan x

is dy
dx ¼ sec2x and from an over-generalisation of the

symmetric property of equality: if a = b, then b = a.
This can be interpreted differently; the error might
originate if f(x) = tan x then f ′ xð Þ ¼ d

dx sec2xð Þ . One
student failed to apply the sum and the chain rule to
differentiate y = sin 7x + ln 5x; instead, he applied the
product rule. This student is not yet at a schema
level of APOS Theory regarding application of the sum
and chain rule in differentiation of trigonometric func-
tions. Four students differentiated y ¼ tan3

ffiffiffiffiffiffiffiffiffiffiffiffi
cot7x

p
as a

product of two functions. As a result, they applied the
product rule instead of the chain rule. Their attempts
show that they are at a pre-action stage regarding the dif-
ferentiation of a composite function.

Procedural errors displayed by students in task 2
One student displayed cancellation errors. She did not
write one which was the outcome of cancellation. In the
last step, she wrote tan x ⋅ cot x as sinx

cosx ⋅
cosx
sinx and can-

celled, which was correct, but she did not write 1 −
sec2x; she only wrote − sec2x as shown in Fig. 7. This
error shows that this student is not familiar with

simplification of trigonometric functions. This might be
poor understanding of the properties of the number 1.
The fact that she writes correct identities of trigonomet-
ric functions indicates she is at the process stage of
APOS Theory regarding the simplification of trigono-
metric functions. The following figure shows an example
of the student who demonstrated a procedural error in
the differentiation of y = 3x4 − tan x csc x.
Nine students did not change a plus sign when multi-

plied by a minus sign. This might be carelessness. Alter-
natively, the error might a lack of algebraic skills from
secondary school level. One student made the error of

differentiating y = 3x4 as dy
dx ¼ 12x instead of dy

dx ¼ 12x3 .
This student apparently knew that he had to apply the
power rule but did so incorrectly. This might have been
carelessness. Alternatively, it might indicate poor under-
standing of the power rule. This student might be placed
at an action stage of the APOS Theory regarding the
power rule schema. Two students wrote that the deriva-

tive of y = csc x is dy
dx ¼ cscx cotx instead of dy

dx ¼ − cscx
cotx . This might be a careless mistake. Alternatively, it
might indicate poor understanding of derivatives of trig-
onometric functions. The same two students also did
not use brackets to enable them to multiply by a minus
sign. This might be aligned with poor algebraic skills.
Three students simplified 4x3/2 sin x incorrectly. They

took out 2
ffiffiffi
x

p
as the highest common factor, which is un-

necessary. They tried to simplify it further, but they did
not remove the highest common factor. They removed 2
as a common factor, which was not the highest common
factor. Most students demonstrated poor ability in the
simplification of trigonometric functions and in algebraic
expressions. Most of the time in mathematical problems,

Fig. 6 An interpretation error in differentiation of y ¼ 4x
3

2 sinx=
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there is a requirement that answers should be left in their
simplest form. Thus, to reach closure in any calculation,
simplification is a basic requirement
Six students indicated that they did not understand

the subtraction of fractions. Their solutions indicated
that they applied the power rule to obtain 6 but failed
to obtain the correct answer in subtraction of 1 from
3
2 to obtain 1

2 . One student failed to manipulate the
multiplication of 0 ⋅ cos x correctly. Instead of obtain-
ing 0 as an answer, she obtained 1. This might be a
poor understanding of the property of zero that any
number multiplied by zero is equal to zero. Alterna-
tively, it might be carelessness. One student in the
differentiation of y = sec2x4 cot3x4 failed to add like
terms in simplification. Instead, she tried to remove
the highest common factor. The fact that these stu-
dents achieved correct differentiation indicates that
they were at an object stage of APOS Theory. Three

students wrote that the derivative of y = x4 is dy
dx ¼ 4x.

This error demonstrates a partial understanding of
the power rule. These students might be placed at
an action stage regarding the application of the
power rule. Eight students failed to apply the power

rule to differentiate y = cot3x4 to obtain dy
dx ¼ 3 cot2x4ð Þ

− csc2x4ð Þ 4x3ð Þ..
Sixteen students failed to simplify the differentiation of

y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 7xð Þ þ ln 5xð Þp

to reach the correct solution.
They did not cancel correctly. They also did not apply the
lowest common denominator (LCD) to simplify these
fractional trigonometric functions and a fractional alge-
braic term. Their solutions showed that they had multi-
plied the numerators and left the denominators as they

were. They also did not add the fractions correctly. The
poor simplification of fractional trigonometric functions
indicates that these students were not yet at the schema
level of the APOS Theory. This refers to the addition of
fractional trigonometric functions. Three students differ-
entiated the radical expression incorrectly. Twelve stu-
dents showed poor understanding of the multiplication of
trigonometric fractions. They also showed a lack of clos-
ure in the differentiation of y ¼ tan3

ffiffiffiffiffiffiffiffiffiffiffiffi
cot7x

p
owing to

poor simplification of fractional trigonometric functions.

Linear extrapolation errors displayed by students in task 2

One student split
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 7xð Þ þ ln 5xð Þp

into
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 7xð Þp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 5xð Þp

. This error originated from
ffiffiffiffiffiffiffiffiffiffiffi
a� b

p ¼ ffiffiffi
a

p �
ffiffiffi
b

p
, which applies in the multiplication of real num-

bers that are written in a radical form but does not
apply in addition and subtraction of real numbers
that are written in a radical form. Table 4 shows er-
rors that were displayed by students in task 2 in the
study.

Results with regard to the students’ third formative
assessment task (task 3)
Errors displayed by students in task 3 were classified
into three categories, namely, conceptual, interpretation
and procedural errors, as discussed earlier in 5.1.

Conceptual errors displayed by students in task 3
Eight students did not know that ln e = 1; hence, they
applied the product rule to differentiate tan2x ln e.
They also did not understand the concept of a nat-
ural logarithm (ln x). Hence, they differentiated 1

2 ln

Fig. 7 Procedural error in differentiation of y = 3x4 − tan x csc x

Siyepu International Journal of STEM Education  (2015) 2:16 Page 12 of 16



cosx as 1
2 ln cosx⋅− sinxþ 1

2− sinx
cosx . One student did not

know that
ffiffiffiffiffiffiffiffiffiffi
cosx

p ¼ cosxð Þ12≠ cosx
1
2 , and she differenti-

ated ln
ffiffiffiffiffiffiffiffiffiffi
cosx

p
incorrectly. For example, her solution

was as follows:

d
dx

ln
ffiffiffiffiffiffiffiffiffiffi
cosx

p� � ¼ 1
ffiffiffiffiffiffiffiffiffiffi
cosx

p ⋅ − sinxð Þ

. In this error, the student did not know that the deriva-
tive of

ffiffiffiffiffiffiffiffiffiffi
cosx

p
is 1

2
ffiffiffiffiffiffiffi
cosx

p ⋅− sinx ¼ − sinx
2
ffiffiffiffiffiffiffi
cosx

p . This displays
poor understanding of the basics of differentiation. The
standard rule to find the derivative of y ¼ ffiffiffi

x
p

is dy
dx ¼ 1

2
ffiffi
x

p .
This student lacked this basic knowledge. As a result,
she might be placed in a process stage of the APOS The-
ory. One student showed errors in differentiation of trig-
onometric functions when integrated with logarithmic
functions. His solution indicated that he did not distin-
guish between the power rule and the logarithmic differ-
entiation. He differentiated ln x3 as 3 ln x2 instead of 3

x .
He wrote that the derivative of y = ln e2x + 3 is 2x + 3 ln e
⋅ 1. One student did not substitute − sinx

2 cosx with − tanx
2 .

This error shows poor understanding of basic trig-
onometric identities such as tanx ¼ sinx

cosx. One student
showed insufficient understanding of differentiation of
a natural logarithmic function in the chain rule as
she differentiated ln sec2x as ln sec2x ⋅ 2 sec x ⋅ sec x
tan x. The error here was in understanding of natural
logarithmic function as this student missed out 1

sec2x . In-
stead, she copied the problem as it is before differentiating
sec2x. She also differentiated − tan 2x as sec2x(−tan 2x)
instead of − sec2x ⋅ 2 = − 2 sec2x. This student might be
placed in an object stage of the APOS Theory. One stu-
dent differentiated ln sec2xþ lne− tan2x incorrectly as she
wrote that y′

y ¼ 1
sec2x ⋅2 secx⋅ cosecx tanxþ − tan2xð Þ lne is

the derivative of ln sec2xþ lne− tan
2x . This solution indi-

cated that this student did not know that the derivative of
sec x is sec x tan x. One student wrote 1

sinx as the derivative

of sec x. One student wrote sec x as the derivative of
tan x, while another one student differentiated − tan2x
as − 2 tan x ⋅ − sec2x. The error was to write a minus
sign in front of sec2x. One student showed poor un-
derstanding of the chain rule as they differentiated −
tan2x as − tan2x sec2x instead of − 2 tan x sec2x. One
student wrote that the derivative of sec2x is − csc2x.
One student wrote that the derivative of − tan2x is −

tan2x ⋅ 2 tan x sec2x. Another student wrote that the de-
rivative of tan x is cot x. Two students wrote that the
derivative of − tan2x is ln sec x ⋅ 0 − sec2x. Two students
did not know how to differentiate a composite function
of a trigonometric function such as − tan2x. One of these
two students wrote − sec x as the derivative of − tan2x.
The other students wrote − (sec2x)2 sec2x as the deriva-
tive of − tan2x and also wrote that the derivative of sec2x
is (sec x tan x)2. This error may have originated from the
algebraic over-generalisation that if a = b, then a2 = b2.

Interpretation errors displayed by students in task 3
Fourteen students fused two functions into one function.
They treated x3e2x + 3 as the first function and

ffiffiffiffiffiffiffiffiffiffi
cosx

p
as

the second function. One student did not know the de-
rivative of y = sec2x; as a result, she wrote that the de-

rivative of y = sec2x is dy
dx ¼ tanx . This error originated

from over-generalisation of the symmetric property, which
states that for any quantities a and b, if a = b, then b = a.
This is not the case in derivatives.
One student wrote that the derivative of y = − (sec2x)2

sec2x is dy
dx ¼ − tan2x and also wrote that the derivative of

y = sec2x is dy
dx ¼ secx tanxð Þ2 . This originated from the

algebraic over-generalisation such as if a = b, then a2 = b2.

Procedural errors displayed by students in task 3
One student showed poor understanding of identities as
he wrote cot θ = tan θ. As a result, he substituted cot θ

Table 4 Students’ errors in task 2

Students’ written work
in task 2

No. of conceptual errors No. of interpretation errors No. of linear extrapolation errors No. of procedural errors No errors

Question 1.1 6 1 0 14 1

1.2 0 6 0 13 7

Question 2.1 1 0 0 2 24

2.2 1 0 0 0 27

2.3 2 0 0 1 25

Question 3.1 8 1 0 12 0

3.2 0 1 1 16 0

3.3 0 4 0 12 12

Total number
of errors

18 13 1 70 96
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with tan θ. One student failed to multiply radical trig-
onometric functions correctly. He manipulated 1ffiffiffiffiffiffiffi

cosx
p ⋅

1
2
ffiffiffiffiffiffiffi
cosx

p ⋅ − sinx
1 incorrectly. As a result, he obtained − sinxffiffiffiffiffiffiffi

cosx
p

instead of − sinx
2 cosx. One student failed to apply the LCD

correctly in y ¼ x3e2xþ3 ffiffiffiffiffiffiffiffiffiffi
cosx

p
. Two students differen-

tiated y = 2x + 3 ln e incorrectly. They did not apply
the sum rule.
They also treated y = 2x + 3 ln e as if it required the ap-

plication of the product rule, treating 2x + 3 as the first
function and ln e as the second function. They wrote
that the derivative of (2x + 3)ln e is 2 ln e. Table 5 shows
errors displayed by students in task 3.

Discussion
This section summarises the results and the implications
thereof in the learning of derivatives of trigonometric
functions. A certain number of students showed that
they were at the action stage of the APOS Theory, as
they could not manipulate application of the sandwich

theorem to prove that lim sinϕ
ϕ ¼ 1. In an APOS analysis

this is evidence that students enter universities with a
limited understanding of limits with regard to the appli-
cation of trigonometric functions. In secondary school,
they only studied limits of algebraic functions. They did
not study limits involving trigonometric functions, as
they were not included in their curriculum. These re-
sults suggest that university lecturers, particularly first
year mathematics lecturers, should handle the introduc-
tion of other functions such as exponential, logarithmic
and trigonometric functions with care. Students should
be guided to get an understanding of the basic special
trigonometric limits as they hear and/or see them for
the first time when learning mathematics.
A small number of students could not write the cor-

rect cosine compound angle formulae. These students
might be placed at a pre-action stage of the APOS The-
ory, as the correct cosine compound angle formulae
were unknown to them. They could not start the first
step of calculation. An APOS analysis showed that these
students had studied complicated trigonometric com-
pound angle formulae only in their last year of

secondary school, that is, at matriculation level. These
students entered universities or graduated from second-
ary school not having yet reached the required schema
stage of the APOS Theory regarding the cosine com-
pound angle formulae. This suggests that first year
mathematics lecturers should use baseline assessment to
find out the prior knowledge of students when they
enter university. A baseline assessment will assist lec-
turers to know where to start their revision in trigono-
metric functions to link secondary school understanding
with the required level of university content knowledge.
Some students did not recall that the derivative of y =

tan x is dy
dx ¼ sec2x . Their errors might be due to their

inability to remember or conceptualise. They demon-
strated poor understanding of trigonometric identities.
These students might be placed at the action stage of
the APOS Theory. These findings suggest that teach-
ing should emphasise that understanding of these
formulae is the basis of mastering differentiation of
trigonometric functions.
A few students did not realise that ln e = 1. As a result,

they could not access the appropriate rule to apply.
Others demonstrated interpretation errors as they dem-
onstrated a poor understanding of multiplication of trig-
onometric functions. These students might be placed at
the action stage of the APOS Theory regarding multipli-
cation of trigonometric functions. This could have origi-
nated from the fact that they did not study multiplication
of trigonometric functions in their secondary school cur-
riculum. They only studied the use of basic operational
signs of trigonometric functions in their first year of uni-
versity mathematics. This suggests that lecturers should
design activities that allow students to explore basic con-
cepts of differentiation. Some students demonstrated con-
fusion with respect to the composite function and other
trigonometric functions. This originated from the fact that
they had only studied composite functions towards the

end of their learning of derivatives. This suggests that lec-

turers should explain composite functions, clearly distin-

guishing them from other functions.

The identification of errors in the learning of deriva-
tives of trigonometric functions assists lecturers to know
their students’ weaknesses and also to find out the origin
of the errors displayed. Revision of activities in class-
room discussions might be used as a tool to rectify stu-
dents’ errors and also to uproot the origin of the errors
identified. Wood (1988) suggests that to avoid the for-
mation of entrenched errors, there should be open class
discussions and interactions that focus on addressing
students’ errors as they arise in a classroom situation.
He further explains that students might gain better
mathematical understanding when they share their inter-
pretations of mathematical problems in classroom

Table 5 Errors displayed by students in task 3

Students’
written
work in
task 3

No. of
conceptual
errors

No. of
interpretation
errors

No. of
procedural
errors

No
errors

Question 1 01 0 1 0

Question 2 13 15 4 4

Question 3 12 02 0 6

Total number of errors 26 17 5 10
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discussions. This current study recommends the use of
the ACE teaching cycle as a pedagogical approach to en-
hance students’ understanding in their learning of deriv-
atives of trigonometric functions.

Conclusions
This study investigated errors displayed by students reg-
istered for Mathematics in Chemical Engineering. This
was done in order to trace causes or origins of the errors
displayed to enable the lecturer (researcher) to develop
strategies to eliminate the errors in the learning of deriv-
atives of trigonometric functions. Strategies include de-
signing learning activities that may lead students to
explore and discuss how they commit these errors. Er-
rors displayed by students in this study mostly originated
from their prior learning of mathematics and over-
generalisation of certain mathematical rules. The stu-
dents’ prior learning had been dominated by rote
learning of routines or procedures without their having
made sense of these. The findings of this study inform
lecturers on how they should prepare lessons to guide
students to understand and apply restrictions of certain
differentiation rules and formulae.
The use of the APOS Theory is a utility, and, as such,

it emphasises individual attention to obtain students’ ex-
planations, discussions and elicit debates. The use of the
APOS Theory is an important supplement as it also pro-
vides a sense of how and why students perform to reach
their full potential and what form of assistance they re-
quire to be in a position to devise viable solutions to
their particular mathematical problems. This, without
doubt, requires lecturers to make an investment in
time and patience if lecturers are seriously concerned
about enhancing the understanding and comprehen-
sion of students in as far mathematics is concerned,
particularly when dealing with students enrolled in an
ECP to develop their understanding of derivatives of
trigonometric functions.
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