16 research outputs found

    Characteristics and Programme-Defined Treatment Outcomes among Childhood Tuberculosis (TB) Patients under the National TB Programme in Delhi

    Get PDF
    Childhood tuberculosis (TB) patients under India's Revised National TB Control Programme (RNTCP) are managed using diagnostic algorithms and directly observed treatment with intermittent thrice-weekly short-course treatment regimens for 6–8 months. The assignment into pre-treatment weight bands leads to drug doses (milligram per kilogram) that are lower than current World Health Organization (WHO) guidelines for some patients.The main aim of our study was to describe the baseline characteristics and treatment outcomes reported under RNTCP for registered childhood (age <15 years) TB patients in Delhi. Additionally, we compared the reported programmatic treatment completion rates between children treated as per WHO recommended anti-TB drug doses with those children treated with anti-TB drug doses below that recommended in WHO guidelines.For this cross-sectional retrospective study, we reviewed programme records of all 1089 TB patients aged <15 years registered for TB treatment from January to June, 2008 in 6 randomly selected districts of Delhi. WHO disease classification and treatment outcome definitions are used by RNTCP, and these were extracted as reported in programme records.Among 1074 patients with records available, 651 (61%) were females, 122 (11%) were <5 years of age, 1000 (93%) were new cases, and 680 (63%) had extra-pulmonary TB (EP-TB)—most commonly peripheral lymph node disease [310 (46%)]. Among 394 pulmonary TB (PTB) cases, 165 (42%) were sputum smear-positive. The overall reported treatment completion rate was 95%. Similar reported treatment completion rates were found in all subgroups assessed, including those patients whose drug dosages were lower than that currently recommended by WHO. Further studies are needed to assess the reasons for the low proportion of under-5 years of age TB case notifications, address challenges in reaching all childhood TB patients by RNTCP, the accuracy of diagnosis, and the clinical validity of reported programme defined treatment completion

    Limited genetic variation and structure in softshell clams (Mya arenaria) across their native and introduced range

    Get PDF
    Author Posting. © Springer, 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Conservation Genetics 10 (2009): 803-814, doi:10.1007/s10592-008-9641-y.To offset declines in commercial landings of the softshell clam, Mya arenaria, resource managers are engaged in extensive stocking of seed clams throughout its range in the northwest Atlantic. Because a mixture of native and introduced stocks can disrupt locally adapted genotypes, we investigated genetic structure in M. arenaria populations across its current distribution to test for patterns of regional differentiation. We sequenced mitochondrial cytochrome oxidase I (COI) for a total of 212 individuals from 12 sites in the northwest Atlantic (NW Atlantic), as well as two introduced sites, the northeast Pacific (NE Pacific) and the North Sea and Europe (NS Europe). Populations exhibited extremely low genetic variation, with one haplotype dominating (65-100%) at all sites sampled. Despite being introduced in the last 150-400 years, both NE Pacific and NS Europe populations had higher diversity measures than those in the NW Atlantic and both contained private haplotypes at frequencies of 10% to 27% consistent with their geographic isolation. While significant genetic structure (FST = 0.159, p<0.001) was observed between NW Atlantic and NS Europe, there was no evidence for genetic structure across the pronounced environmental clines of the NW Atlantic. Reduced genetic diversity in mtDNA combined with previous studies reporting reduced genetic diversity in nuclear markers strongly suggests a recent population expansion in the NW Atlantic, a pattern that may result from the retreat of ice sheets during Pleistocene glacial periods. Lack of genetic diversity and regional genetic differentiation suggests that present management strategies for the commercially important softshell clam are unlikely to have a significant impact on the regional distribution of genetic variation, although the possibility of disrupting locally adapted stocks cannot be excluded.This work was supported by NSF grants OCE-0326734 and OCE-0215905 to L. Mullineaux and OCE- 0349177 (Biological Oceanography) to PHB

    Genetic Structure Among 50 Species of the Northeastern Pacific Rocky Intertidal Community

    Get PDF
    Comparing many species' population genetic patterns across the same seascape can identify species with different levels of structure, and suggest hypotheses about the processes that cause such variation for species in the same ecosystem. This comparative approach helps focus on geographic barriers and selective or demographic processes that define genetic connectivity on an ecosystem scale, the understanding of which is particularly important for large-scale management efforts. Moreover, a multispecies dataset has great statistical advantages over single-species studies, lending explanatory power in an effort to uncover the mechanisms driving population structure. Here, we analyze a 50-species dataset of Pacific nearshore invertebrates with the aim of discovering the most influential structuring factors along the Pacific coast of North America. We collected cytochrome c oxidase I (COI) mtDNA data from populations of 34 species of marine invertebrates sampled coarsely at four coastal locations in California, Oregon, and Alaska, and added published data from 16 additional species. All nine species with non-pelagic development have strong genetic structure. For the 41 species with pelagic development, 13 show significant genetic differentiation, nine of which show striking FST levels of 0.1–0.6. Finer scale geographic investigations show unexpected regional patterns of genetic change near Cape Mendocino in northern California for five of the six species tested. The region between Oregon and Alaska is a second focus of intraspecific genetic change, showing differentiation in half the species tested. Across regions, strong genetic subdivision occurs more often than expected in mid-to-high intertidal species, a result that may reflect reduced gene flow due to natural selection along coastal environmental gradients. Finally, the results highlight the importance of making primary research accessible to policymakers, as unexpected barriers to marine dispersal break the coast into separate demographic zones that may require their own management plans

    Physicochemical conditions and timing of rodingite formation: evidence from rodingite-hosted fluid inclusions in the JM Asbestos mine, Asbestos, Québec

    Get PDF
    Fluid inclusions and geological relationships indicate that rodingite formation in the Asbestos ophiolite, Québec, occurred in two, or possibly three, separate episodes during thrusting of the ophiolite onto the Laurentian margin, and that it involved three fluids. The first episode of rodingitization, which affected diorite, occurred at temperatures of between 290 and 360°C and pressures of 2.5 to 4.5 kbar, and the second episode, which affected granite and slate, occurred at temperatures of between 325 and 400°C and pressures less than 3 kbar. The fluids responsible for these episodes of alteration were moderately to strongly saline (~1.5 to 6.3 m eq. NaCl), rich in divalent cations and contained appreciable methane. A possible third episode of alteration is suggested by primary fluid inclusions in vesuvianite-rich bodies and secondary inclusions in other types of rodingite, with significantly lower trapping temperatures, salinity and methane content. The association of the aqueous fluids with hydrocarbon-rich fluids containing CH4 and higher order alkanes, but no CO2, suggests strongly that the former originated from the serpentinites. The similarities in the composition of the fluids in all rock types indicate that the ophiolite had already been thrust onto the slates when rodingitization occurred

    Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (<it>CO1</it>) to diagnose and delimit species. However, there is no compelling <it>a priori </it>reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal <it>CO1 </it>barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation.</p> <p>Results</p> <p>Based on 1,179 mitochondrial genomes of eutherians, we found that the universal <it>CO1 </it>barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels.</p> <p>Conclusions</p> <p>We suggest that the <it>CO1 </it>barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups.</p

    Outlier SNPs detect weak regional structure against a background of genetic homogeneity in the Eastern Rock Lobster, Sagmariasus verreauxi

    Get PDF
    Genetic differentiation is characteristically weak in marine species making assessments of population connectivity and structure difficult. However, the advent of genomic methods has increased genetic resolution, enabling studies to detect weak, but significant population differentiation within marine species. With an increasing number of studies employing high resolution genome-wide techniques, we are realising that the connectivity of marine populations is often complex and quantifying this complexity can provide an understanding of the processes shaping marine species genetic structure and to inform long-term, sustainable management strategies. This study aims to assess the genetic structure, connectivity, and local adaptation of the Eastern Rock Lobster (Sagmariasus verreauxi), which has a maximum pelagic larval duration of 12 months and inhabits both subtropical and temperate environments. We used 645 neutral and 15 outlier SNPs to genotype lobsters collected from the only two known breeding populations and a third episodic population—encompassing S. verreauxi's known range. Through examination of the neutral SNP panel, we detected genetic homogeneity across the three regions, which extended across the Tasman Sea encompassing both Australian and New Zealand populations. We discuss differences in neutral genetic signature of S. verreauxi and a closely related, co-distributed rock lobster, Jasus edwardsii, determining a regional pattern of genetic disparity between the species, which have largely similar life histories. Examination of the outlier SNP panel detected weak genetic differentiation between the three regions. Outlier SNPs showed promise in assigning individuals to their sampling origin and may prove useful as a management tool for species exhibiting genetic homogeneity

    Latitudinal variability in spatial genetic structure in the invasive ascidian, Styela plicata

    No full text
    Increases in temperature can shorten planktonic larval durations, so that higher temperatures may reduce dispersal distances for many marine animals. To test this prediction, we first quantified how minimum time to settlement is shortened at higher temperatures for the ascidian Styela plicata. Second, using latitude as a correlate for ocean temperature and spatial genetic structure as a proxy for dispersal, we tested for a negative correlation between latitude and spatial genetic structure within populations, as measured by anonymous DNA markers. Spatial genetic structure was variable among latitudes, with significant structure at low and intermediate latitudes (high and medium temperatures) and there was no genetic structure within high-latitude (low temperature) populations. In addition, we found consistently high genetic diversity across all Australian populations, showing no evidence for recent local bottlenecks associated S. plicata's history as an invasive species. There was, however, significant genetic differentiation between all populations indicating limited ongoing gene flow
    corecore