134 research outputs found

    Classifying HCP task-fMRI networks using heat kernels

    Get PDF
    Network theory provides a principled abstraction of the human brain: reducing a complex system into a simpler representation from which to investigate brain organisation. Recent advancement in the neuroimaging field are towards representing brain connectivity as a dynamic process in order to gain a deeper understanding of the interplay between functional modules for efficient information transport. In this work, we employ heat kernels to model the process of energy diffusion in functional networks. We extract node-based, multi-scale features which describe the propagation of heat over 'time' which not only inform the importance of a node in the graph, but also incorporate local and global information of the underlying geometry of the network. As a proof-of-concept, we test the efficacy of two heat kernel features for discriminating between motor and working memory functional networks from the Human Connectome Project. For comparison, we also classified task networks using traditional network metrics which similarly provide rankings of node importance. In addition, a variant of the Smooth Incremental Graphical Lasso Estimation algorithm was used to estimate non-sparse, precision matrices to account for non-stationarity in the time series. We illustrate differences in heat kernel features between tasks, and also between regions of the brain. Using a random forest classifier, we showed heat kernel metrics to capture intrinsic properties of functional networks that serve well as features for task classification

    In Vitro and In Vivo Germ Line Potential of Stem Cells Derived from Newborn Mouse Skin

    Get PDF
    We previously reported that fetal porcine skin-derived stem cells were capable of differentiation into oocyte-like cells (OLCs). Here we report that newborn mice skin-derived stem cells are also capable of differentiating into early OLCs. Using stem cells from mice that are transgenic for Oct4 germline distal enhancer-GFP, germ cells resulting from their differentiation are expected to be GFP+. After differentiation, some GFP+ OLCs reached 40–45 µM and expressed oocyte markers. Flow cytometric analysis revealed that ∼0.3% of the freshly isolated skin cells were GFP+. The GFP-positive cells increased to ∼7% after differentiation, suggesting that the GFP+ cells could be of in vivo origin, but are more likely induced upon being cultured in vitro. To study the in vivo germ cell potential of skin-derived cells, they were aggregated with newborn ovarian cells, and transplanted under the kidney capsule of ovariectomized mice. GFP+ oocytes were identified within a subpopulation of follicles in the resulting growth. Our finding that early oocytes can be differentiated from mice skin-derived cells in defined medium may offer a new in vitro model to study germ cell formation and oogenesis

    Key Science Goals for the Next-Generation Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) has led to the first images of a supermassive black hole, revealing the central compact objects in the elliptical galaxy M87 and the Milky Way. Proposed upgrades to this array through the next-generation EHT (ngEHT) program would sharply improve the angular resolution, dynamic range, and temporal coverage of the existing EHT observations. These improvements will uniquely enable a wealth of transformative new discoveries related to black hole science, extending from event-horizon-scale studies of strong gravity to studies of explosive transients to the cosmological growth and influence of supermassive black holes. Here, we present the key science goals for the ngEHT and their associated instrument requirements, both of which have been formulated through a multi-year international effort involving hundreds of scientists worldwide

    Increased Expression of PcG Protein YY1 Negatively Regulates B Cell Development while Allowing Accumulation of Myeloid Cells and LT-HSC Cells

    Get PDF
    Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs

    Violence and post-traumatic stress disorder in Sao Paulo and Rio de Janeiro, Brazil: the protocol for an epidemiological and genetic survey

    Get PDF
    Background: violence is a public health major concern, and it is associated with post-traumatic stress disorder and other psychiatric outcomes. Brazil is one of the most violent countries in the world, and has an extreme social inequality. Research on the association between violence and mental health may support public health policy and thus reduce the burden of disease attributable to violence. the main objectives of this project were: to study the association between violence and mental disorders in the Brazilian population; to estimate the prevalence rates of exposure to violence, post-traumatic stress disorder, common metal disorder, and alcohol hazardous use and dependence: and to identify contextual and individual factors, including genetic factors, associated with the outcomes.Methods/design: one phase cross-sectional survey carried out in São Paulo and Rio de Janeiro, Brazil. A multistage probability to size sampling scheme was performed in order to select the participants (3000 and 1500 respectively). the cities were stratified according to homicide rates, and in São Paulo the three most violent strata were oversampled. the measurements included exposure to traumatic events, psychiatric diagnoses (CIDI 2.1), contextual (homicide rates and social indicators), and individual factors, such as demographics, social capital, resilience, help seeking behaviours. the interviews were carried between June/2007 February/2008, by a team of lay interviewers. the statistical analyses will be weight-adjusted in order to take account of the design effects. Standardization will be used in order to compare the results between the two centres. Whole genome association analysis will be performed on the 1 million SNP (single nucleotide polymorphism) arrays, and additional association analysis will be performed on additional phenotypes. the Ethical Committee of the Federal University of São Paulo approved the study, and participants who matched diagnostic criteria have been offered a referral to outpatient clinics at the Federal University of São Paulo and Federal University of Rio de Janeiro

    Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature- A ring with azimuthal brightness asymmetry- A nd to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009-2017 to be consistent with a persistent asymmetric ring of ∼40 μas diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin

    The Event Horizon Telescope Image of the Quasar NRAO 530

    Get PDF
    We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%-8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μas along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin
    • …
    corecore