3,031 research outputs found
Giving voters what they want? Party orientation perceptions and preferences in the British electorate
Some of the most important propositions in the political marketing literature hinge on assumptions about the electorate. In particular, voters are presumed to react in different ways to different orientations or postures. Yet there are theoretical reasons for questioning some of these assumptions, and certainly they have seldom been empirically tested. Here, we focus on one prominent example of political marketing research: Lees-Marshment’s orientations’ model. We investigate how the public reacts to product and market orientation, whether they see a trade-off between the two (a point in dispute among political marketing scholars), and whether partisans differ from non-partisan voters by being more inclined to value product over market orientation. Evidence from two mass sample surveys of the British public (both conducted online by YouGov) demonstrates important heterogeneity within the electorate, casts doubt on the core assumptions underlying some political marketing arguments and raises broader questions about what voters are looking for in a party
Cognitive architectures as Lakatosian research programmes: two case studies
Cognitive architectures - task-general theories of the structure and function of the complete cognitive system - are sometimes argued to be more akin to frameworks or belief systems than scientific theories. The argument stems from the apparent non-falsifiability of existing cognitive architectures. Newell was aware of this criticism and argued that architectures should be viewed not as theories subject to Popperian falsification, but rather as Lakatosian research programs based on cumulative growth. Newell's argument is undermined because he failed to demonstrate that the development of Soar, his own candidate architecture, adhered to Lakatosian principles. This paper presents detailed case studies of the development of two cognitive architectures, Soar and ACT-R, from a Lakatosian perspective. It is demonstrated that both are broadly Lakatosian, but that in both cases there have been theoretical progressions that, according to Lakatosian criteria, are pseudo-scientific. Thus, Newell's defense of Soar as a scientific rather than pseudo-scientific theory is not supported in practice. The ACT series of architectures has fewer pseudo-scientific progressions than Soar, but it too is vulnerable to accusations of pseudo-science. From this analysis, it is argued that successive versions of theories of the human cognitive architecture must explicitly address five questions to maintain scientific credibility
Black Holes in Modified Gravity (MOG)
The field equations for Scalar-Tensor-Vector-Gravity (STVG) or modified
gravity (MOG) have a static, spherically symmetric black hole solution
determined by the mass with two horizons. The strength of the gravitational
constant is where is a parameter. A regular
singularity-free MOG solution is derived using a nonlinear field dynamics for
the repulsive gravitational field component and a reasonable physical
energy-momentum tensor. The Kruskal-Szekeres completion of the MOG black hole
solution is obtained. The Kerr-MOG black hole solution is determined by the
mass , the parameter and the spin angular momentum . The
equations of motion and the stability condition of a test particle orbiting the
MOG black hole are derived, and the radius of the black hole photosphere and
the shadows cast by the Schwarzschild-MOG and Kerr-MOG black holes are
calculated. A traversable wormhole solution is constructed with a throat
stabilized by the repulsive component of the gravitational field.Comment: 14 pages, 3 figures. Upgraded version of paper to match published
version in European Physics Journal
Some remarks on a new exotic spacetime for time travel by free fall
This work is essentially a review of a new spacetime model with closed causal
curves, recently presented in another paper (Class. Quantum Grav.
\textbf{35}(16) (2018), 165003). The spacetime at issue is topologically
trivial, free of curvature singularities, and even time and space orientable.
Besides summarizing previous results on causal geodesics, tidal accelerations
and violations of the energy conditions, here redshift/blueshift effects and
the Hawking-Ellis classification of the stress-energy tensor are examined.Comment: 17 pages, 9 figures. Submitted as a contribution to the proceedings
of "DOMOSCHOOL - International Alpine School of Mathematics and Physics,
Domodossola 2018". Possible text overlaps with my previous work
arXiv:1803.08214, of which this is essentially a review. Additional results
concerning redshift/blueshift effects and the classification of the
stress-energy tensor are presented her
Topological Quantum Glassiness
Quantum tunneling often allows pathways to relaxation past energy barriers
which are otherwise hard to overcome classically at low temperatures. However,
this is not always the case. In this paper we provide simple exactly solvable
examples where the barriers each system encounters on its approach to lower and
lower energy states become increasingly large and eventually scale with the
system size. If the environment couples locally to the physical degrees of
freedom in the system, tunnelling under large barriers requires processes whose
order in perturbation theory is proportional to the width of the barrier. This
results in quantum relaxation rates that are exponentially suppressed in system
size: For these quantum systems, no physical bath can provide a mechanism for
relaxation that is not dynamically arrested at low temperatures. The examples
discussed here are drawn from three dimensional generalizations of Kitaev's
toric code, originally devised in the context of topological quantum computing.
They are devoid of any local order parameters or symmetry breaking and are thus
examples of topological quantum glasses. We construct systems that have slow
dynamics similar to either strong or fragile glasses. The example with
fragile-like relaxation is interesting in that the topological defects are
neither open strings or regular open membranes, but fractal objects with
dimension .Comment: (18 pages, 4 figures, v2: typos and updated figure); Philosophical
Magazine (2011
Polarization of coalitions in an agent-based model of political discourse
Political discourse is the verbal interaction between political actors in a policy domain. This article explains the formation of polarized advocacy or discourse coalitions in this complex phenomenon by presenting a dynamic, stochastic, and discrete agent-based model based on graph theory and local optimization. In a series of thought experiments, actors compute their utility of contributing a specific statement to the discourse by following ideological criteria, preferential attachment, agenda-setting strategies, governmental coherence, or other mechanisms. The evolving macro-level discourse is represented as a dynamic network and evaluated against arguments from the literature on the policy process. A simple combination of four theoretical mechanisms is already able to produce artificial policy debates with theoretically plausible properties. Any sufficiently realistic configuration must entail innovative and path-dependent elements as well as a blend of exogenous preferences and endogenous opinion formation mechanisms
Separability of Black Holes in String Theory
We analyze the origin of separability for rotating black holes in string
theory, considering both massless and massive geodesic equations as well as the
corresponding wave equations. We construct a conformal Killing-Stackel tensor
for a general class of black holes with four independent charges, then identify
two-charge configurations where enhancement to an exact Killing-Stackel tensor
is possible. We show that further enhancement to a conserved Killing-Yano
tensor is possible only for the special case of Kerr-Newman black holes. We
construct natural null congruences for all these black holes and use the
results to show that only the Kerr-Newman black holes are algebraically special
in the sense of Petrov. Modifying the asymptotic behavior by the subtraction
procedure that induces an exact SL(2)^2 also preserves only the conformal
Killing-Stackel tensor. Similarly, we find that a rotating Kaluza-Klein black
hole possesses a conformal Killing-Stackel tensor but has no further
enhancements.Comment: 27 page
Generalized Painleve-Gullstrand descriptions of Kerr-Newman black holes
Generalized Painleve-Gullstrand metrics are explicitly constructed for the
Kerr-Newman family of charged rotating black holes. These descriptions are free
of all coordinate singularities; moreover, unlike the Doran and other proposed
metrics, an extra tunable function is introduced to ensure all variables in the
metrics remain real for all values of the mass M, charge Q, angular momentum
aM, and cosmological constant \Lambda > - 3/(a^2). To describe fermions in
Kerr-Newman spacetimes, the stronger requirement of non-singular vierbein
one-forms at the horizon(s) is imposed and coordinate singularities are
eliminated by local Lorentz boosts. Other known vierbein fields of Kerr-Newman
black holes are analysed and discussed; and it is revealed that some of these
descriptions are actually not related by physical Lorentz transformations to
the original Kerr-Newman expression in Boyer-Lindquist coordinates - which is
the reason complex components appear (for certain ranges of the radial
coordinate) in these metrics. As an application of our constructions the
correct effective Hawking temperature for Kerr black holes is derived with the
method of Parikh and Wilczek.Comment: 5 pages; extended to include application to derivation of Hawking
radiation for Kerr black holes with Parikh-Wilczek metho
Individualization as driving force of clustering phenomena in humans
One of the most intriguing dynamics in biological systems is the emergence of
clustering, the self-organization into separated agglomerations of individuals.
Several theories have been developed to explain clustering in, for instance,
multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of
fish, and animal herds. A persistent puzzle, however, is clustering of opinions
in human populations. The puzzle is particularly pressing if opinions vary
continuously, such as the degree to which citizens are in favor of or against a
vaccination program. Existing opinion formation models suggest that
"monoculture" is unavoidable in the long run, unless subsets of the population
are perfectly separated from each other. Yet, social diversity is a robust
empirical phenomenon, although perfect separation is hardly possible in an
increasingly connected world. Considering randomness did not overcome the
theoretical shortcomings so far. Small perturbations of individual opinions
trigger social influence cascades that inevitably lead to monoculture, while
larger noise disrupts opinion clusters and results in rampant individualism
without any social structure. Our solution of the puzzle builds on recent
empirical research, combining the integrative tendencies of social influence
with the disintegrative effects of individualization. A key element of the new
computational model is an adaptive kind of noise. We conduct simulation
experiments to demonstrate that with this kind of noise, a third phase besides
individualism and monoculture becomes possible, characterized by the formation
of metastable clusters with diversity between and consensus within clusters.
When clusters are small, individualization tendencies are too weak to prohibit
a fusion of clusters. When clusters grow too large, however, individualization
increases in strength, which promotes their splitting.Comment: 12 pages, 4 figure
The Nuts and Bolts of Einstein-Maxwell Solutions
We find new non-supersymmetric solutions of five-dimensional ungauged
supergravity coupled to two vector multiplets. The solutions are regular,
horizonless and have the same asymptotic charges as non-extremal charged black
holes. An essential ingredient in our construction is a four-dimensional
Euclidean base which is a solution to Einstein-Maxwell equations. We construct
stationary solutions based on the Euclidean dyonic Reissner-Nordstrom black
hole as well as a six-parameter family with a dyonic Kerr-Newman-NUT base.
These solutions can be viewed as compactifications of eleven-dimensional
supergravity on a six-torus and we discuss their brane interpretation.Comment: 29 pages, 3 figure
- …
