293 research outputs found

    Labyrinthine window rupture as a cause of acute sensorineural hearing loss

    Get PDF
    Labyrinthine window rupture (LWR) is one cause of acute sensorineural hearing loss and need for early exploration is clear for good improved hearing. Acute sensorineural hearing loss of 60Β dB or more treated from May 2006 to May 2010 were retrospectively analyzed. There were 21 ears of severe deafness, 18 ears of profound deafness, and 10 ears of total deafness. All patients were examined with temporal bone CT. Space-occupying lesions around the labyrinthine windows were suggestive images of LWR. Thirty-five ears were operated for LWR while 14 ears of SHL received conservative treatments. Fifty-seven percent of LWR improved 30Β dB or more after sealing of both labyrinthine windows. Of the 15 markedly recovered ears, 14 ears were operated within 2Β weeks from the onset. Of the five cured ears, four ears were operated within a week from the onset. As for the hearing prognosis of SHL, 88% of severe and profound deafness improved 30Β dB or more but total deafness did not improve more than 30Β dB. Exclusion of LWR from SHL and early surgical intervention in LWR will bring about good hearing prognosis to both LWR and SHL

    A review of African horse sickness and its implications for Ireland

    Get PDF
    African horse sickness is an economically highly important non-contagious but infectious Orbivirus disease that is transmitted by various species of Culicoides midges. The equids most severely affected by the virus are horses, ponies, and European donkeys; mules are somewhat less susceptible, and African donkeys and zebra are refractory to the devastating consequences of infection. In recent years, Bluetongue virus, an Orbivirus similar to African horse sickness, which also utilises Culicoides spp. as its vector, has drastically increased its range into previously unaffected regions in northern Europe, utilising indigenous vector species, and causing widespread economic damage to the agricultural sector. Considering these events, the current review outlines the history of African horse sickness, including information concerning virus structure, transmission, viraemia, overwintering ability, and the potential implications that an outbreak would have for Ireland. While the current risk for the introduction of African horse sickness to Ireland is considered at worst β€˜very low’, it is important to note that prior to the 2006 outbreak of Bluetongue in northern Europe, both diseases were considered to be of equal risk to the United Kingdom (β€˜medium-risk’). It is therefore likely that any outbreak of this disease would have serious socio-economic consequences for Ireland due to the high density of vulnerable equids and the prevalence of Culicoides species, potentially capable of vectoring the virus

    Fungal enzyme sets for plant polysaccharide degradation

    Get PDF
    Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families

    Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rhizopus oryzae </it>is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses.</p> <p>Results</p> <p>Carbohydrate Active enzyme (CAZy) annotation of the <it>R. oryzae </it>identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs) and a high number of glycosyl transferases (GTs) and carbohydrate esterases (CEs). A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars), chitin, chitosan, Ξ²-1,3-glucan and fungal cell wall fractions suggest specific adaptations of <it>R. oryzae </it>to its environment.</p> <p>Conclusions</p> <p>CAZy analyses of the genome of the zygomycete fungus <it>R. oryzae </it>and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota.</p

    Acute Cellular Alterations in the Hippocampus After Status Epilepticus

    Full text link
    The critical, fundamental mechanisms that determine the emergence of status epilepticus from a single seizure and the prolonged duration of status epilepticus are uncertain. However, several general concepts of the pathophysiology of status epilepticus have emerged: (a) the hippocampus is consistently activated during status epilepticus; (b) loss of GABA-mediated inhibitory synaptic transmission in the hippocampus is critical for emergence of status epilepticus; and, finally (c) glutamatergic excitatory synaptic transmission is important in sustaining status epilepticus. This review focuses on the alteration of GABAergic inhibition in the hippocampus that occurs during the prolonged seizures of status epilepticus. If reduction in GABAergic inhibition leads to development of status epilepticus, enhancement of GABAergic inhibition would be expected to interrupt status epilepticus. Benzodiazepines and barbiturates are both used in the treatment of status epilepticus and both drugs enhance GABA A receptor-mediated inhibition. However, patients often become refractory to benzodiazepines when seizures are prolonged, and barbiturates are often then used for these refractory cases of status epilepticus. Recent evidence suggests the presence of multiple GABA A receptor isoforms in the hippocampus with different sensitivity to benzodiazepines but similar sensitivity to barbiturates, thus explaining why the two drug classes might have different clinical effects. In addition, rapid functional plasticity of GABA A receptors has been demonstrated to occur during status epilepticus in rats. During status epilepticus, there was a substantial reduction of diazepam potency for termination of the seizures. The loss of sensitivity of the animals to diazepam during status epilepticus was accompanied by an alteration in the functional properties of hippocampal dentate granule cell GABA A receptors. Dentate granule cell GABA A receptor currents from rats undergoing status epilepticus had reduced sensitivity to diazepam and zinc but normal sensitivity to GABA and pentobarbital. Therefore, the prolonged seizures of status epilepticus rapidly altered the functional properties of hippocampal dentate granule cell GABA A receptors, possibly explaining why benzodiazepines and barbiturates may not be equally effective during treatment of the prolonged seizures of status epilepticus. A comprehensive understanding of the cellular and molecular events leading to the development, maintenance, and cytotoxicity of status epilepticus should permit development of more effective treatment strategies and reduction in the mortality and morbidity of status epilepticus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65664/1/j.1528-1157.1999.tb00873.x.pd

    Pro-apoptotic and antiproliferative activity of human KCNRG, a putative tumor suppressor in 13q14 region

    Get PDF
    Deletion of 13q14.3 and a candidate gene KCNRG (potassium channel regulating gene) is the most frequent chromosomal abnormality in B-cell chronic lymphocytic leukemia and is a common finding in multiple myeloma (MM). KCNRG protein may interfere with the normal assembly of the K+ channel proteins causing the suppression of Kv currents. We aimed to examine possible role of KCNRG haploinsufficiency in chronic lymphocytic leukemia (CLL) and MM cells. We performed detailed genomic analysis of the KCNRG locus; studied effects of the stable overexpression of KCNRG isoforms in RPMI-8226, HL-60, and LnCaP cells; and evaluated relative expression of its transcripts in various human lymphomas. Three MM cell lines and 35 CLL PBL samples were screened for KCNRG mutations. KCNRG exerts growth suppressive and pro-apoptotic effects in HL-60, LnCaP, and RPMI-8226 cells. Direct sequencing of KCNRG exons revealed point mutation delT in RPMI-8226 cell line. Levels of major isoform of KCNRG mRNA are lower in DLBL lymphomas compared to normal PBL samples, while levels of its minor mRNA are decreased across the broad range of the lymphoma types. The haploinsufficiency of KCNRG might be relevant to the progression of CLL and MM at least in a subset of patients

    Neuropeptide Receptor Transcriptome Reveals Unidentified Neuroendocrine Pathways

    Get PDF
    Neuropeptides are an important class of molecules involved in diverse aspects of metazoan development and homeostasis. Insects are ideal model systems to investigate neuropeptide functions, and the major focus of insect neuropeptide research in the last decade has been on the identification of their receptors. Despite these vigorous efforts, receptors for some key neuropeptides in insect development such as prothoracicotropic hormone, eclosion hormone and allatotropin (AT), remain undefined. In this paper, we report the comprehensive cloning of neuropeptide G protein-coupled receptors from the silkworm, Bombyx mori, and systematic analyses of their expression. Based on the expression patterns of orphan receptors, we identified the long-sought receptor for AT, which is thought to stimulate juvenile hormone biosynthesis in the corpora allata (CA). Surprisingly, however, the AT receptor was not highly expressed in the CA, but instead was predominantly transcribed in the corpora cardiaca (CC), an organ adjacent to the CA. Indeed, by using a reverse-physiological approach, we purified and characterized novel allatoregulatory peptides produced in AT receptor-expressing CC cells, which may indirectly mediate AT activity on the CA. All of the above findings confirm the effectiveness of a systematic analysis of the receptor transcriptome, not only in characterizing orphan receptors, but also in identifying novel players and hidden mechanisms in important biological processes. This work illustrates how using a combinatorial approach employing bioinformatic, molecular, biochemical and physiological methods can help solve recalcitrant problems in neuropeptide research

    Plakophilin-3 Is Required for Late Embryonic Amphibian Development, Exhibiting Roles in Ectodermal and Neural Tissues

    Get PDF
    The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3) knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types

    Streptococcus pneumoniae Serotype 1 Capsular Polysaccharide Induces CD8+CD28βˆ’ Regulatory T Lymphocytes by TCR Crosslinking

    Get PDF
    Zwitterionic capsular polysaccharides (ZPS) of commensal bacteria are characterized by having both positive and negative charged substituents on each repeating unit of a highly repetitive structure that has an Ξ±-helix configuration. In this paper we look at the immune response of CD8+ T cells to ZPSs. Intraperitoneal application of the ZPS Sp1 from Streptococcus pneumoniae serotype 1 induces CD8+CD28βˆ’ T cells in the spleen and peritoneal cavity of WT mice. However, chemically modified Sp1 (mSp1) without the positive charge and resembling common negatively charged polysaccharides fails to induce CD8+CD28βˆ’ T lymphocytes. The Sp1-induced CD8+CD28βˆ’ T lymphocytes are CD122lowCTLA-4+CD39+. They synthesize IL-10 and TGF-Ξ². The Sp1-induced CD8+CD28βˆ’ T cells exhibit immunosuppressive properties on CD4+ T cells in vivo and in vitro. Experimental approaches to elucidate the mechanism of CD8+ T cell activation by Sp1 demonstrate in a dimeric MHC class I-Ig model that Sp1 induces CD8+ T cell activation by enhancing crosslinking of TCR. The expansion of CD8+CD28βˆ’ T cells is independent, of direct antigen-presenting cell/T cell contact and, to the specificity of the T cell receptor (TCR). In CD8+CD28βˆ’ T cells, Sp1 enhances Zap-70 phosphorylation and increasingly involves NF-ΞΊB which ultimately results in protection versus apoptosis and cell death and promotes survival and accumulation of the CD8+CD28βˆ’ population. This is the first description of a naturally occurring bacterial antigen that is able to induce suppressive CD8+CD28βˆ’ T lymphocytes in vivo and in vitro. The underlying mechanism of CD8+ T cell activation appears to rely on enhanced TCR crosslinking. The data provides evidence that ZPS of commensal bacteria play an important role in peripheral tolerance mechanisms and the maintenance of the homeostasis of the immune system
    • …
    corecore