390 research outputs found
X inactivation in females with X-linked Charcot-Marie-Tooth disease.
X-linked Charcot-Marie-Tooth disease (CMT1X) is the second most common inherited neuropathy, caused by mutations in gap junction beta-1 (GJB1). Males have a uniformly moderately severe phenotype while females have a variable phenotype, suggested to be due to X inactivation. We aimed to assess X inactivation pattern in females with CMT1X and correlate this with phenotype using the CMT examination score to determine whether the X inactivation pattern accounted for the variable phenotype in females with CMT1X. We determined X inactivation pattern in 67 females with CMT1X and 24 controls using the androgen receptor assay. We were able to determine which X chromosome carried the GJB1 mutation in 30 females. There was no difference in X inactivation pattern between patients and controls. In addition, there was no correlation between X inactivation pattern in blood and phenotype. A possible explanation for these findings is that the X inactivation pattern in Schwann cells rather than in blood may explain the variable phenotype in females with CMT1X
Diving of Great Shearwaters (Puffinus gravis) in Cold and Warm Water Regions of the South Atlantic Ocean
BACKGROUND: Among the most widespread seabirds in the world, shearwaters of the genus Puffinus are also some of the deepest diving members of the Procellariiformes. Maximum diving depths are known for several Puffinus species, but dive depths or diving behaviour have never been recorded for great shearwaters (P. gravis), the largest member of this genus. This study reports the first high sampling rate (2 s) of depth and diving behaviour for Puffinus shearwaters. METHODOLOGY/PRINCIPAL FINDINGS: Time-depth recorders (TDRs) were deployed on two female great shearwaters nesting on Inaccessible Island in the South Atlantic Ocean, recording 10 consecutive days of diving activity. Remote sensing imagery and movement patterns of 8 males tracked by satellite telemetry over the same period were used to identify probable foraging areas used by TDR-equipped females. The deepest and longest dive was to 18.9 m and lasted 40 s, but most (>50%) dives were <2 m deep. Diving was most frequent near dawn and dusk, with <0.5% of dives occurring at night. The two individuals foraged in contrasting oceanographic conditions, one in cold (8 to 10°C) water of the Sub-Antarctic Front, likely 1000 km south of the breeding colony, and the other in warmer (10 to 16°C) water of the Sub-tropical Frontal Zone, at the same latitude as the colony, possibly on the Patagonian Shelf, 4000 km away. The cold water bird spent fewer days commuting, conducted four times as many dives as the warm water bird, dived deeper on average, and had a greater proportion of bottom time during dives. CONCLUSIONS/SIGNIFICANCE: General patterns of diving activity were consistent with those of other shearwaters foraging in cold and warm water habitats. Great shearwaters are likely adapted to forage in a wide range of oceanographic conditions, foraging mostly with shallow dives but capable of deep diving
Comparison between clinical grading and navigation data of knee laxity in ACL-deficient knees
<p>Abstract</p> <p>Background</p> <p>The latest version of the navigation system for anterior cruciate ligament (ACL) reconstruction has the supplementary ability to assess knee stability before and after ACL reconstruction. In this study, we compared navigation data between clinical grades in ACL-deficient knees and also analyzed correlation between clinical grading and navigation data.</p> <p>Methods</p> <p>150 ACL deficient knees that received primary ACL reconstruction using an image-free navigation system were included. For clinical evaluation, the Lachman, anterior drawer, and pivot shift tests were performed under general anesthesia and were graded by an examiner. For the assessment of knee stability using the navigation system, manual tests were performed again before ACL reconstruction. Navigation data were recorded as anteroposterior (AP) displacement of the tibia for the Lachman and anterior drawer tests, and both AP displacement and tibial rotation for the pivot shift test.</p> <p>Results</p> <p>Navigation data of each clinical grade were as follows; Lachman test grade 1+: 10.0 mm, grade 2+: 13.2 ± 3.1 mm, grade 3+: 14.5 ± 3.3 mm, anterior drawer test grade 1+: 6.8 ± 1.4 mm, grade 2+: 7.4 ± 1.8 mm, grade 3+: 9.1 ± 2.3 mm, pivot shift test grade 1+: 3.9 ± 1.8 mm/21.5° ± 7.8°, grade 2+: 4.8 ± 2.1 mm/21.8° ± 7.1°, and grade 3+: 6.0 ± 3.2 mm/21.1° ± 7.1°. There were positive correlations between clinical grading and AP displacement in the Lachman, and anterior drawer tests. Although positive correlations between clinical grading and AP displacement in pivot shift test were found, there were no correlations between clinical grading and tibial rotation in pivot shift test.</p> <p>Conclusions</p> <p>In response to AP force, the navigation system can provide the surgeon with correct objective data for knee laxity in ACL deficient knees. During the pivot shift test, physicians may grade according to the displacement of the tibia, rather than rotation.</p
The Merging of Two Dynasties—Identification of an African Cotton Leaf Curl Disease-Associated Begomovirus with Cotton in Pakistan
Cotton leaf curl disease (CLCuD) is a severe disease of cotton that occurs in Africa and Pakistan/northwestern India. The disease is caused by begomoviruses in association with specific betasatellites that differ between Africa and Asia. During survey of symptomatic cotton in Sindh (southern Pakistan) Cotton leaf curl Gezira virus (CLCuGV), the begomovirus associated with CLCuD in Africa, was identified. However, the cognate African betasatellite (Cotton leaf curl Gezira betasatellite) was not found. Instead, two Asian betasatellites, the CLCuD-associated Cotton leaf curl Multan betasatellite (CLCuMB) and Chilli leaf curl betasatellite (ChLCB) were identified. Inoculation of the experimental plant species Nicotiana benthamiana showed that CLCuGV was competent to maintain both CLCuMB and ChLCB. Interestingly, the enations typical of CLCuD were only induced by CLCuGV in the presence of CLCuMB. Also in infections involving both CLCuMB and ChLCB the enations typical of CLCuMB were less evident. This is the first time an African begomovirus has been identified on the Indian sub-continent, highlight the growing threat of begomoviruses and particularly the threat of CLCuD causing viruses to cotton cultivation in the rest of the world
Set-shifting as a component process of goal-directed problem-solving
In two experiments, we compared secondary task interference on Tower of London performance resulting from three different secondary tasks. The secondary tasks were designed to tap three different executive functions, namely set-shifting, memory monitoring and updating, and response inhibition. Previous work using individual differences methodology suggests that, all other things being equal, the response inhibition or memory tasks should result in the greatest interference. However, this was not found to be the case. Rather, in both experiments the set-shifting task resulted in significantly more interference on Tower of London performance than either of the other secondary tasks. Subsequent analyses suggest that the degree of interference could not be attributed to differences in secondary task difficulty. Results are interpreted in the light of related work which suggests that solving problems with non-transparent goal/subgoal structure requires flexible shifting between subgoals – a process that is held to be impaired by concurrent performance of a set-shifting task
A novel formulation technology for baculoviruses protects biopesticide from degradation by ultraviolet radiation
Biopesticides are biological pest control agents that are viewed as safer alternatives to the synthetic chemicals that dominate the global insecticide market. A major constraint on the wider adoption of biopesticides is their susceptibility to the ultraviolet (UV: 290–400 nm) radiation in sunlight, which limits their persistence and efficacy. Here, we describe a novel formulation technology for biopesticides in which the active ingredient (baculovirus) is micro-encapsulated in an ENTOSTAT wax combined with a UV absorbant (titanium dioxide, TiO2). Importantly, this capsule protects the sensitive viral DNA from degrading in sunlight, but dissolves in the alkaline insect gut to release the virus, which then infects and kills the pest. We show, using simulated sunlight, in both laboratory bioassays and trials on cabbage and tomato plants, that this can extend the efficacy of the biopesticide well beyond the few hours of existing virus formulations, potentially increasing the spray interval and/or reducing the need for high application rates. The new formulation has a shelf-life at 30 °C of at least 6 months, which is comparable to standard commercial biopesticides and has no phytotoxic effect on the host plants. Taken together, these findings suggest that the new formulation technology could reduce the costs and increase the efficacy of baculovirus biopesticides, with the potential to make them commercially competitive alternatives to synthetic chemicals
Experimental Beetle Metapopulations Respond Positively to Dynamic Landscapes and Reduced Connectivity
Interactive effects of multiple environmental factors on metapopulation dynamics have received scant attention. We designed a laboratory study to test hypotheses regarding interactive effects of factors affecting the metapopulation dynamics of red flour beetle, Tribolium castaneum. Within a four-patch landscape we modified resource level (constant and diminishing), patch connectivity (high and low) and patch configuration (static and dynamic) to conduct a 23 factorial experiment, consisting of 8 metapopulations, each with 3 replicates. For comparison, two control populations consisting of isolated and static subpopulations were provided with resources at constant or diminishing levels. Longitudinal data from 22 tri-weekly counts of beetle abundance were analyzed using Bayesian Poisson generalized linear mixed models to estimate additive and interactive effects of factors affecting abundance. Constant resource levels, low connectivity and dynamic patches yielded greater levels of adult beetle abundance. For a given resource level, frequency of colonization exceeded extinction in landscapes with dynamic patches when connectivity was low, thereby promoting greater patch occupancy. Negative density dependence of pupae on adults occurred and was stronger in landscapes with low connectivity and constant resources; these metapopulations also demonstrated greatest stability. Metapopulations in control landscapes went extinct quickly, denoting lower persistence than comparable landscapes with low connectivity. When landscape carrying capacity was constant, habitat destruction coupled with low connectivity created asynchronous local dynamics and refugia within which cannibalism of pupae was reduced. Increasing connectivity may be counter-productive and habitat destruction/recreation may be beneficial to species in some contexts
- …