5,858 research outputs found

    A Neuroergonomics Approach to Mental Workload, Engagement and Human Performance

    Get PDF
    The assessment and prediction of cognitive performance is a key issue for any discipline concerned with human operators in the context of safety-critical behavior. Most of the research has focused on the measurement of mental workload but this construct remains difficult to operationalize despite decades of research on the topic. Recent advances in Neuroergonomics have expanded our understanding of neurocognitive processes across different operational domains. We provide a framework to disentangle those neural mechanisms that underpin the relationship between task demand, arousal, mental workload and human performance. This approach advocates targeting those specific mental states that precede a reduction of performance efficacy. A number of undesirable neurocognitive states (mind wandering, effort withdrawal, perseveration, inattentional phenomena) are identified and mapped within a two-dimensional conceptual space encompassing task engagement and arousal. We argue that monitoring the prefrontal cortex and its deactivation can index a generic shift from a nominal operational state to an impaired one where performance is likely to degrade. Neurophysiological, physiological and behavioral markers that specifically account for these states are identified. We then propose a typology of neuroadaptive countermeasures to mitigate these undesirable mental states

    Thalamic deep brain stimulation may relieve breathlessness in COPD

    Get PDF
    The cerebral mechanisms of dyspnoea (breathlessness) are not well understood. Neuroimaging studies of experimentally induced dyspnoea in healthy individuals have identified several cortical areas that might form a neural network for perception of dyspnoea [1], much like those identified for pain perception [2]. However, functional imaging studies alone do not reveal neurophysiological pathways and may miss putative targets for dyspnoea relief. The objective of this study was to assess the effects of Deep Brain Stimulation (DBS) of four different brain nuclei on the sensation of dyspnoea in an individual with Chronic Obstructive Pulmonary Disease (COPD) using an established multidimensional dyspnoea tool [3]

    Using a model of group psychotherapy to support social research on sensitive topics

    Get PDF
    This article describes the exploratory use of professional therapeutic support by social researchers working on a sensitive topic. Talking to recently bereaved parents about the financial implications of their child's death was expected to be demanding work, and the research design included access to an independent psychotherapeutic service. Using this kind of professional support is rare within the general social research community, and it is useful to reflect on the process. There are likely to be implications for collection and interpretation of data, research output and the role and experience of the therapist. Here, the primary focus is the potential impact on researcher well-being

    The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.

    Get PDF
    BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury

    Recent Developments in the Casimir Effect

    Full text link
    In this talk I review various developments in the past year concerning quantum vacuum energy, the Casimir effect. In particular, there has been continuing controversy surrounding the temperature correction to the Lifshitz formula for the Casimir force between real materials, be they metals or semiconductors. Consensus has emerged as to how Casimir energy accelerates in a weak gravitational field; quantum vacuum energy, including the divergent parts which renormalize the masses of the Casimir plates, accelerates indeed according to the equivalence principle. Significant development has been forthcoming in applying the multiple scattering formalism to describe the interaction between nontrivial objects. In weak coupling, closed-form expressions for the Casimir force between the bodies, which for example reveal significant discrepancies from the naive proximity force approximation, can be achieved in many cases.Comment: 29 pages, 14 figures, uses jpconf.cls style. Invited opening talk at "60 Years of the Casimir Effect," Brasilia, June 21-29, 200

    Surface EMG signal normalisation and filtering improves sensitivity of equine gait analysis

    Get PDF
    Low-frequency noise attenuation and normalisation are fundamental signal processing (SP) methods for surface electromyography (sEMG), but are absent, or not consistently applied, in equine biomechanics. The purpose of this study was to examine the effect of different band-pass filtering and normalisation conventions on sensitivity for identifying differences in sEMG amplitude-related measures, calculated from leading (LdH) and trailing hindlimb (TrH) during canter, where between-limb differences in vertical loading are known. sEMG and 3D-kinematic data were collected from the right Biceps Femoris in 10 horses during both canter leads. Peak hip and stifle joint angle and angular velocity were calculated during stance to verify between-limb biomechanical differences. Four SP methods, with and without normalisation and high-pass filtering, were applied to raw sEMG data. Methods 1 (M1) to 4 (M4) included DC-offset removal and full-wave rectification. Method 2 (M2) included additional normalisation relative to maximum sEMG across all strides. Method 3 (M3) included additional high-pass filtering (Butterworth 4th order, 40Hz cut-off), for artefact attenuation. M4 included the addition of high-pass filtering and normalisation. Integrated EMG (iEMG) and average rectified value (ARV) were calculated using processed sEMG data from M1 – M4, with stride duration as the temporal domain. sEMG parameters, within M1 – M4, and kinematic parameters were grouped by LdH and TrH and compared using repeated measures ANOVA. Significant between-limb differences for hip and stifle joint kinematics were found, indicating functional differences in hindlimb movement. M2 and M4, revealed significantly greater iEMG and ARV for LdH than TrH (p<0.01), with M4 producing the lowest p values and largest effects sizes. Significant between-limb differences in sEMG parameters were not observed with M1 and M3. The results indicate that equine sEMG SP should include normalisation and high-pass filtering to improve sensitivity for identifying differences in muscle function associated with biomechanical changes during equine gait

    Evaluating Promotional Approaches for Citizen Science Biological Recording: Bumblebees as a Group Versus Harmonia axyridis as a Flagship for Ladybirds

    Get PDF
    Over the past decade, the number of biological records submitted by members of the public have increased dramatically. However, this may result in reduced record quality, depending on how species are promoted in the media. Here we examined the two main promotional approaches for citizen science recording schemes: flagship-species, using one charismatic species as an umbrella for the entire group (here, Harmonia axyridis (Pallas) for Coleoptera: Coccinellidae), and general-group, where the group is promoted as a whole and no particular prominence is given to any one species (here, bumblebees, genus Bombus (Hymenoptera: Apidae)). Of the two approaches, the general-group approach produced data that was not biased towards any one species, but far fewer records per year overall. In contrast, the flagship-species approach generated a much larger annual dataset, but heavily biased towards the flagship itself. Therefore, we recommend that the approach for species promotion is fitted to the result desired

    Assessment of the paraspinal muscles of subjects presenting an idiopathic scoliosis: an EMG pilot study

    Get PDF
    BACKGROUND: It is known that the back muscles of scoliotic subjects present abnormalities in their fiber type composition. Some researchers have hypothesized that abnormal fiber composition can lead to paraspinal muscle dysfunction such as poor neuromuscular efficiency and muscle fatigue. EMG parameters were used to evaluate these impairments. The purpose of the present study was to examine the clinical potential of different EMG parameters such as amplitude (RMS) and median frequency (MF) of the power spectrum in order to assess the back muscles of patients presenting idiopathic scoliosis in terms of their neuromuscular efficiency and their muscular fatigue. METHODS: L5/S1 moments during isometric efforts in extension were measured in six subjects with idiopathic scoliosis and ten healthy controls. The subjects performed three 7 s ramp contractions ranging from 0 to 100% maximum voluntary contraction (MVC) and one 30 s sustained contraction at 75% MVC. Surface EMG activity was recorded bilaterally from the paraspinal muscles at L5, L3, L1 and T10. The slope of the EMG RMS/force (neuromuscular efficiency) and MF/force (muscle composition) relationships were computed during the ramp contractions while the slope of the EMG RMS/time and MF/time relationships (muscle fatigue) were computed during the sustained contraction. Comparisons were performed between the two groups and between the left and right sides for the EMG parameters. RESULTS: No significant group or side differences between the slopes of the different measures used were found at the level of the apex (around T10) of the major curve of the spine. However, a significant side difference was seen at a lower level (L3, p = 0.01) for the MF/time parameter. CONCLUSION: The EMG parameters used in this study could not discriminate between the back muscles of scoliotic subjects and those of control subject regarding fiber type composition, neuromuscular efficiency and muscle fatigue at the level of the apex. The results of this pilot study indicate that compensatory strategies are potentially seen at lower level of the spine with these EMG parameters
    corecore