32 research outputs found
Phylogenetic Relationships in Pterodroma Petrels Are Obscured by Recent Secondary Contact and Hybridization
The classification of petrels (Pterodroma spp.) from Round
Island, near Mauritius in the Indian Ocean, has confounded researchers since
their discovery in 1948. In this study we investigate the relationships between
Round Island petrels and their closest relatives using evidence from
mitochondrial DNA sequence data and ectoparasites. Far from providing clear
delimitation of species boundaries, our results reveal that hybridization among
species on Round Island has led to genetic leakage between populations from
different ocean basins. The most common species on the island,
Pterodroma arminjoniana, appears to be hybridizing with two
rarer species (P. heraldica and P. neglecta),
subverting the reproductive isolation of all three and allowing gene flow.
P. heraldica and P. neglecta breed
sympatrically in the Pacific Ocean, where P. arminjoniana is
absent, but no record of hybridization between these two exists and they remain
phenotypically distinct. The breakdown of species boundaries in Round Island
petrels followed environmental change (deforestation and changes in species
composition due to hunting) within their overlapping ranges. Such multi-species
interactions have implications not only for conservation, but also for our
understanding of the processes of evolutionary diversification and
speciation
Novel image–novel location object recognition task sensitive to age-related cognitive decline in nondemented elderly
Traditional tests used in the clinic to identify dementia, such as the mini-mental state examination (MMSE), are useful to identify severe cognitive impairments but might be less sensitive to detect more subtle age-related cognitive changes. Previously, the novel image–novel location (NINL) object recognition test was shown to be sensitive to detect effects of apolipoprotein E4, a risk factor for developing age-related cognitive decline and Alzheimer’s disease, in nondemented elderly. In the present longitudinal study, performance on the MMSE and the NINL tests were compared over a 4-year period. Individual NINL scores over this period were highly correlated. In addition, while MMSE scores did not change over the 4-year period, NINL scores did. In a final testing session of a subset of the participants, NINL scores correlated with logical memory and word recall lists, cognitive tasks used to detect dementia in the clinic, as well as clinical dementia rating scales. These results support that the NINL might be a valuable tool to assess age-related cognitive decline
cIAP1/2 Are Direct E3 Ligases Conjugating Diverse Types of Ubiquitin Chains to Receptor Interacting Proteins Kinases 1 to 4 (RIP1–4)
The RIP kinases have emerged as essential mediators of cellular stress that integrate both extracellular stimuli emanating from various cell-surface receptors and signals coming from intracellular pattern recognition receptors. The molecular mechanisms regulating the ability of the RIP proteins to transduce the stress signals remain poorly understood, but seem to rely only partially on their kinase activities. Recent studies on RIP1 and RIP2 have highlighted the importance of ubiquitination as a key process regulating their capacity to activate downstream signaling pathways. In this study, we found that XIAP, cIAP1 and cIAP2 not only directly bind to RIP1 and RIP2 but also to RIP3 and RIP4. We show that cIAP1 and cIAP2 are direct E3 ubiquitin ligases for all four RIP proteins and that cIAP1 is capable of conjugating the RIPs with diverse types of ubiquitin chains, including linear chains. Consistently, we show that repressing cIAP1/2 levels affects the activation of NF-κB that is dependent on RIP1, -2, -3 and -4. Finally, we identified Lys51 and Lys145 of RIP4 as two critical residues for cIAP1-mediated ubiquitination and NF-κB activation
Diversity of Staphylococcus aureus Isolates in European Wildlife
Staphylococcus aureus is a well-known colonizer and cause of infection among
animals and it has been described from numerous domestic and wild animal
species. The aim of the present study was to investigate the molecular
epidemiology of S. aureus in a convenience sample of European wildlife and to
review what previously has been observed in the subject field. 124 S. aureus
isolates were collected from wildlife in Germany, Austria and Sweden; they
were characterized by DNA microarray hybridization and, for isolates with
novel hybridization patterns, by multilocus sequence typing (MLST). The
isolates were assigned to 29 clonal complexes and singleton sequence types
(CC1, CC5, CC6, CC7, CC8, CC9, CC12, CC15, CC22, CC25, CC30, CC49, CC59, CC88,
CC97, CC130, CC133, CC398, ST425, CC599, CC692, CC707, ST890, CC1956, ST2425,
CC2671, ST2691, CC2767 and ST2963), some of which (ST2425, ST2691, ST2963)
were not described previously. Resistance rates in wildlife strains were
rather low and mecA-MRSA isolates were rare (n = 6). mecC-MRSA (n = 8) were
identified from a fox, a fallow deer, hares and hedgehogs. The common cattle-
associated lineages CC479 and CC705 were not detected in wildlife in the
present study while, in contrast, a third common cattle lineage, CC97, was
found to be common among cervids. No Staphylococcus argenteus or
Staphylococcus schweitzeri-like isolates were found. Systematic studies are
required to monitor the possible transmission of human- and livestock-
associated S. aureus/MRSA to wildlife and vice versa as well as the possible
transmission, by unprotected contact to animals. The prevalence of S.
aureus/MRSA in wildlife as well as its population structures in different
wildlife host species warrants further investigation
Molecular marks for epigenetic identification of developmental and cancer stem cells
Epigenetic regulations of genes by reversible methylation of DNA (at the carbon-5 of cytosine) and numerous reversible modifications of histones play important roles in normal physiology and development, and epigenetic deregulations are associated with developmental disorders and various disease states, including cancer. Stem cells have the capacity to self-renew indefinitely. Similar to stem cells, some malignant cells have the capacity to divide indefinitely and are referred to as cancer stem cells. In recent times, direct correlation between epigenetic modifications and reprogramming of stem cell and cancer stem cell is emerging. Major discoveries were made with investigations on reprogramming gene products, also known as master regulators of totipotency and inducer of pluoripotency, namely, OCT4, NANOG, cMYC, SOX2, Klf4, and LIN28. The challenge to induce pluripotency is the insertion of four reprogramming genes (Oct4, Sox2, Klf4, and c-Myc) into the genome. There are always risks of silencing of these genes by epigenetic modifications in the host cells, particularly, when introduced through retroviral techniques. In this contribution, we will discuss some of the major discoveries on epigenetic modifications within the chromatin of various genes associated with cancer progression and cancer stem cells in comparison to normal development of stem cell. These modifications may be considered as molecular signatures for predicting disorders of development and for identifying disease states
Ecdysone Control of Developmental Transitions: Lessons from Drosophila
The steroid hormone ecdysone is the central regulator of insect developmental transitions. Recent new advances in our understanding of ecdysone action have relied heavily on the application of Drosophila melanogaster molecular genetic tools to study insect metamorphosis. In this review, we focus on three major aspects of Drosophila ecdysone biology: (a) factors that regulate the timing of ecdysone release, (b) molecular basis of stage- and tissue-specific responses to ecdysone, and (c) feedback regulation and coordination of ecdysone signaling