4,842 research outputs found
Double Exchange model for nanoscopic clusters
We solve the double exchange model on nanoscopic clusters exactly, and
specifically consider a six-site benzene-like nanocluster. This simple model is
an ideal testbed for studying magnetism in nanoclusters and for validating
approximations such as the dynamical mean field theory (DMFT). Non-local
correlations arise between neighboring localized spins due to the Hund's rule
coupling, favoring a short-range magnetic order of ferro- or antiferromagnetic
type. For a geometry with more neighboring sites or a sufficiently strong
hybridization between leads and the nanocluster, these non-local correlations
are less relevant, and DMFT can be applied reliably.Comment: 9 pages, 9 figures, 1 tabl
Recommended from our members
Active noise control on high frequency narrow band dental drill noise: Preliminary results
Dental drills produce a characteristic noise that is uncomfortable for patients and is also known to be harmful to dentists under prolonged exposure. It is therefore desirable to protect the patient and dentist whilst allowing two-way communication. A solution is to use a combination of the three main noise cancellation methods, namely, Passive Noise Control, Adaptive Filtering and Active Noise Control. Dental drill noise occurs at very high frequency ranges in relation to conventional ANC, typically 2kHz to 6kHz and it has a narrow band characteristic due to the direct relation of the noise to the rotational speed of the bearing. This paper presents a design of an experimental rig where first applications of ANC on dental drill noise are executed using the standard filtered reference Least Mean Square (FXLMS) algorithm. The secondary path is kept as simple as possible, due to the high frequency range of interest, and hence is chosen as the space between headphone loudspeaker and error microphone placed in the ear (input of the headphone loudspeaker and the output of the error microphone). A standard headphone loudspeaker is used for the control source and the microphone inside of an “Ear and Cheek Simulator Type 43AG” is used as the error microphone. The secondary path transfer function is obtained and preliminary results of the application of ANC are discussed
Recommended from our members
Dental drill noise reduction using a combination of active noise control, passive noise control and adaptive filtering
Dental drills produce a characteristic high frequency, narrow band noise that is uncomfortable for patients and is also known to be harmful to dentists under prolonged exposure. It is therefore desirable to protect the patient and dentist whilst allowing two-way communication. A solution is to use a combination of the three main noise control methods, namely, Passive Noise Control (PNC), Adaptive Filtering (AF) and Active Noise Control (ANC). This paper discusses the application of the three methods to reduce dental drill noise while allowing two-way communication. Experimental setup for measuring the noise reduction by PNC is explained and results from different headphones and headphone types are presented. The implementation and results of an AF system using the Least Mean Square (LMS) algorithm are shown. ANC requires a modification of the LMS algorithm due to the introduction of the electro-acoustical cancellation path transfer function to compensate for the delays introduced by the control system. Therefore a cancellation path transfer function modeling method based on the filtered reference LMS (FXLMS) algorithm is presented along with preliminary results of the implementation
Spectroscopic studies in open quantum systems
The spectroscopic properties of an open quantum system are determined by the
eigenvalues and eigenfunctions of an effective Hamiltonian H consisting of the
Hamiltonian H_0 of the corresponding closed system and a non-Hermitian
correction term W arising from the interaction via the continuum of decay
channels. The eigenvalues E_R of H are complex. They are the poles of the
S-matrix and provide both the energies and widths of the states. We illustrate
the interplay between Re(H) and Im(H) by means of the different interference
phenomena between two neighboured resonance states. Level repulsion along the
real axis appears if the interaction is caused mainly by Re(H) while a
bifurcation of the widths appears if the interaction occurs mainly due to
Im(H). We then calculate the poles of the S-matrix and the corresponding
wavefunctions for a rectangular microwave resonator with a scatter as a
function of the area of the resonator as well as of the degree of opening to a
guide. The calculations are performed by using the method of exterior complex
scaling. Re(W) and Im(W) cause changes in the structure of the wavefunctions
which are permanent, as a rule. At full opening to the lead, short-lived
collective states are formed together with long-lived trapped states. The
wavefunctions of the short-lived states at full opening to the lead are very
different from those at small opening. The resonance picture obtained from the
microwave resonator shows all the characteristic features known from the study
of many-body systems in spite of the absence of two-body forces. The poles of
the S-matrix determine the conductance of the resonator. Effects arising from
the interplay between resonance trapping and level repulsion along the real
axis are not involved in the statistical theory.Comment: The six jpg files are not included in the tex-fil
Dynamics of open quantum systems
The coupling between the states of a system and the continuum into which it
is embedded, induces correlations that are especially large in the short time
scale. These correlations cannot be calculated by using a statistical or
perturbational approach. They are, however, involved in an approach describing
structure and reaction aspects in a unified manner. Such a model is the SMEC
(shell model embedded in the continuum). Some characteristic results obtained
from SMEC as well as some aspects of the correlations induced by the coupling
to the continuum are discussed.Comment: 16 pages, 5 figure
An X-ray Study of Two B+B Binaries: AH Cep and CW Cep
AH Cep and CW Cep are both early B-type binaries with short orbital periods
of 1.8~d and 2.7~d, respectively. All four components are B0.5V types. The
binaries are also double-lined spectroscopic and eclipsing. Consequently,
solutions for orbital and stellar parameters make the pair of binaries ideal
targets for a study of the colliding winds between two B~stars. {\em Chandra}
ACIS-I observations were obtained to determine X-ray luminosities. AH~Cep was
detected with an unabsorbed X-ray luminosity at a 90\% confidence interval of
erg s, or ,
relative to the combined Bolometric luminosities of the two components. While
formally consistent with expectations for embedded wind shocks, or binary wind
collision, the near-twin system of CW~Cep was a surprising non-detection. For
CW~Cep, an upper limit was determined with , again
for the combined components. One difference between these two systems is that
AH~Cep is part of a multiple system. The X-rays from AH~Cep may not arise from
standard wind shocks nor wind collision, but perhaps instead from magnetism in
any one of the four components of the system. The possibility could be tested
by searching for cyclic X-ray variability in AH~Cep on the short orbital period
of the inner B~stars.Comment: Astrophysical Journal, accepte
Antiferromagnetism of SrFe2As2 studied by Single-Crystal 75As-NMR
We report results of 75As nuclear magnetic resonance (NMR) experiments on a
self-flux grown high-quality single crystal of SrFe2As2. The NMR spectra
clearly show sharp first-order antiferromagnetic (AF) and structural
transitions occurring simultaneously. The behavior in the vicinity of the
transition is compared with our previous study on BaFe2As2. No significant
difference was observed in the temperature dependence of the static quantities
such as the AF splitting and electric quadrupole splitting. However, the
results of the NMR relaxation rate revealed difference in the dynamical spin
fluctuations. The stripe-type AF fluctuations in the paramagnetic state appear
to be more anisotropic in BaFe2As2 than in SrFe2As2.Comment: 4 pages, 5 figures; discussion revised; accepted for publication in
J. Phys. Soc. Jp
Whispering gallery modes in open quantum billiards
The poles of the S-matrix and the wave functions of open 2D quantum billiards
with convex boundary of different shape are calculated by the method of complex
scaling. Two leads are attached to the cavities. The conductance of the
cavities is calculated at energies with one, two and three open channels in
each lead. Bands of overlapping resonance states appear which are localized
along the convex boundary of the cavities and contribute coherently to the
conductance. These bands correspond to the whispering gallery modes appearing
in the classical calculations.Comment: 9 pages, 3 figures in jpg and gif forma
Suppression of Magnetic Order by Pressure in BaFe2As2
We performed the dc resistivity and the ZF 75As-NMR measurement of BaFe2As2
under high pressure. The T-P phase diagram of BaFe2As2 determined from
resistivity anomalies and the ZF 75As-NMR clearly revealed that the SDW anomaly
is quite robust against P.Comment: 2 pages, 2 figure
- …