4,329 research outputs found
Short time relaxation of a driven elastic string in a random medium
We study numerically the relaxation of a driven elastic string in a two
dimensional pinning landscape. The relaxation of the string, initially flat, is
governed by a growing length separating the short steady-state
equilibrated lengthscales, from the large lengthscales that keep memory of the
initial condition. We find a macroscopic short time regime where relaxation is
universal, both above and below the depinning threshold, different from the one
expected for standard critical phenomena. Below the threshold, the zero
temperature relaxation towards the first pinned configuration provides a novel,
experimentally convenient way to access all the critical exponents of the
depinning transition independently.Comment: 4.2 pages, 3 figure
Representations of the quantum matrix algebra
It is shown that the finite dimensional irreducible representaions of the
quantum matrix algebra ( the coordinate ring of ) exist only when both q and p are roots of unity. In this case th e space of
states has either the topology of a torus or a cylinder which may be thought of
as generalizations of cyclic representations.Comment: 20 page
Vapor pressure measurements over supercooled water in the temperature range from −10 1 °C to +10 −2 °C
An accurate measurement of saturation vapor pressure of supercooled water is a strong challenge in
metrology, mainly due to difficulties concerning keeping water at a liquid state at temperatures well
below the melting point; thus few experimental data covering limited temperature ranges (down to
about 253 K) are reported in literature. For this reason, an investigation of the water vapor – supercooled
water equilibrium along the saturation line is carried out at Istituto Nazionale di Ricerca Metrologica
(INRIM).
Measurements cover the temperature range from 261.26 K to 273.25 K, corresponding to a saturation
vapor pressure from about 244 Pa to 611 Pa. The experimental apparatus includes a borosilicate glass
sample cell, kept in a liquid bath at a constant temperature with millikelvin stability and connected to
a manifold where the pressure is measured using a capacitive diaphragm pressure gauge.
In this work, the water sample preparation, the measuring method and measurement corrections are
reported; moreover, a comparison between experimental and literature data is conducted along with
the most used vapor pressure formulations. Measurement results are discussed and uncertainty sources
estimated. The resulting expanded relative uncertainty (k = 2) varies from 0.085% at 261.26 K to 0.039% at
273.25 K
Differential Calculi on Some Quantum Prehomogeneous Vector Spaces
This paper is devoted to study of differential calculi over quadratic
algebras, which arise in the theory of quantum bounded symmetric domains. We
prove that in the quantum case dimensions of the homogeneous components of the
graded vector spaces of k-forms are the same as in the classical case. This
result is well-known for quantum matrices.
The quadratic algebras, which we consider in the present paper, are
q-analogues of the polynomial algebras on prehomogeneous vector spaces of
commutative parabolic type. This enables us to prove that the de Rham complex
is isomorphic to the dual of a quantum analogue of the generalized
Bernstein-Gelfand-Gelfand resolution.Comment: LaTeX2e, 51 pages; changed conten
On quantization of r-matrices for Belavin-Drinfeld Triples
We suggest a formula for quantum universal -matrices corresponding to
quasitriangular classical -matrices classified by Belavin and Drinfeld for
all simple Lie algebras. The -matrices are obtained by twisting the standard
universal -matrix.Comment: 12 pages, LaTe
Genomics knowledge and attitudes among European public health professionals. Results of a cross-sectional survey
Background The international public health (PH) community is debating the opportunity to incorporate genomic technologies into PH practice. A survey was conducted to assess attitudes of the European Public Health Association (EUPHA) members towards their role in the implementation of public health genomics (PHG), and their knowledge and attitudes towards genetic testing and the delivery of genetic services. Methods EUPHA members were invited via monthly newsletter and e-mail to take part in an online survey from February 2017 to January 2018. A descriptive analysis of knowledge and attitudes was conducted, along with a univariate and multivariate analysis of their determinants. Results Five hundred and two people completed the questionnaire, 17.9% were involved in PHG activities. Only 28.9% correctly identified all medical conditions for which there is (or not) evidence for implementing genetic testing; over 60% thought that investing in genomics may divert economic resources from social and environmental determinants of health. The majority agreed that PH professionals may play different roles in incorporating genomics into their activities. Better knowledge was associated with positive attitudes towards the use of genetic testing and the delivery of genetic services in PH (OR = 1.48; 95% CI 1.01–2.18). Conclusions Our study revealed quite positive attitudes, but also a need to increase awareness on genomics among European PH professionals. Those directly involved in PHG activities tend to have a more positive attitude and better knowledge; however, gaps are also evident in this group, suggesting the need to harmonize practice and encourage greater exchange of knowledge among professionals
Free-energy distribution of the directed polymer at high temperature
We study the directed polymer of length in a random potential with fixed
endpoints in dimension 1+1 in the continuum and on the square lattice, by
analytical and numerical methods. The universal regime of high temperature
is described, upon scaling 'time' and space (with for the discrete model) by a continuum model with
-function disorder correlation. Using the Bethe Ansatz solution for the
attractive boson problem, we obtain all positive integer moments of the
partition function. The lowest cumulants of the free energy are predicted at
small time and found in agreement with numerics. We then obtain the exact
expression at any time for the generating function of the free energy
distribution, in terms of a Fredholm determinant. At large time we find that it
crosses over to the Tracy Widom distribution (TW) which describes the fixed
infinite limit. The exact free energy distribution is obtained for any time
and compared with very recent results on growth and exclusion models.Comment: 6 pages, 3 figures large time limit corrected and convergence to
Tracy Widom established, 1 figure changed
Freezing Transition in Decaying Burgers Turbulence and Random Matrix Dualities
We reveal a phase transition with decreasing viscosity at \nu=\nu_c>0
in one-dimensional decaying Burgers turbulence with a power-law correlated
random profile of Gaussian-distributed initial velocities
\sim|x-x'|^{-2}. The low-viscosity phase exhibits non-Gaussian
one-point probability density of velocities, continuously dependent on \nu,
reflecting a spontaneous one step replica symmetry breaking (RSB) in the
associated statistical mechanics problem. We obtain the low orders cumulants
analytically. Our results, which are checked numerically, are based on
combining insights in the mechanism of the freezing transition in random
logarithmic potentials with an extension of duality relations discovered
recently in Random Matrix Theory. They are essentially non mean-field in nature
as also demonstrated by the shock size distribution computed numerically and
different from the short range correlated Kida model, itself well described by
a mean field one step RSB ansatz. We also provide some insights for the finite
viscosity behaviour of velocities in the latter model.Comment: Published version, essentially restructured & misprints corrected. 6
pages, 5 figure
A mean-field kinetic lattice gas model of electrochemical cells
We develop Electrochemical Mean-Field Kinetic Equations (EMFKE) to simulate
electrochemical cells. We start from a microscopic lattice-gas model with
charged particles, and build mean-field kinetic equations following the lines
of earlier work for neutral particles. We include the Poisson equation to
account for the influence of the electric field on ion migration, and
oxido-reduction processes on the electrode surfaces to allow for growth and
dissolution. We confirm the viability of our approach by simulating (i) the
electrochemical equilibrium at flat electrodes, which displays the correct
charged double-layer, (ii) the growth kinetics of one-dimensional
electrochemical cells during growth and dissolution, and (iii) electrochemical
dendrites in two dimensions.Comment: 14 pages twocolumn, 17 figure
- …
