1,463 research outputs found

    Organocatalytic alpha-trifluoromethylthiolation of silylenol ethers : Batch vs continuous flow reactions

    Get PDF
    This work describes the organocatalytic \uce\ub1-trifluoromethylthiolation of silylenol ethers using N-(trifluoromethylthio)saccharin as trifluoromethylthiolating reagent that is activated by the presence of catalytic amounts of a Lewis base. Tetrahydrothiophene was identified as the best organocatalyst and it was successfully employed to promote the synthesis of different \uce\ub1-trifluoromethylketones; the reaction has been performed under a traditional batch methodology and under continuous flow conditions. In general, yields obtained using the traditional batch process were higher than those observed when the reaction was performed under flow conditions. However, short reaction times, higher productivity and higher space time yields were observed when a flow system process was employed. Preliminary DFT calculations were also performed in order to elucidate the mechanism of the reaction

    Effect of the particle size range of construction and demolition waste on the fresh and hardened-state properties of fly ash-based geopolymer mortars with total replacement of sand

    Get PDF
    This study seeks the valorization of industrial residues (fly ash and construction and demolition waste (CDW)) through the production of geopolymer mortars. The effect of the sand substitution by CDW and the influence of the particle size range of CDW fine aggregates on the fresh and hardened properties of the mortars were evaluated. Geopolymer mortars were produced using biomass fly ash waste and metakaolin as a binder, CDW as fine aggregates, and an alkali solution of sodium silicate and sodium hydroxide as activator. The geopolymer mortars were characterized in fresh state by the flow table test and in the hardened state through chemical, physical/microstructural analyzes. The mortars produced with CDW showed lower flowability when compared to the ones prepared with sand. The compressive and flexural strength of hardened mortars, respectively, obtained with residues were higher when compared to sand: 40 MPa and 8.5 MPa with CDW, against 23 MPa and 3.1 MPa for sand-based samples. It was observed that mortars developed with recycled aggregate and natural aggregate present similar chemical and mineralogical compositions. The superior results obtained in the mechanical properties of mortars produced with CDW are related to the recycled aggregate-geopolymer paste interface.publishe

    Influence of shower fluctuations and primary composition on studies of the shower longitudinal development

    Full text link
    We study the influence of shower fluctuations, and the possible presence of different nuclear species in the primary cosmic ray spectrum, on the experimental determination of both shower energy and the proton air inelastic cross section from studies of the longitudinal development of atmospheric showers in fluorescence experiments. We investigate the potential of track length integral and shower size at maximum as estimators of shower energy. We find that at very high energy (~10^19-10^20 eV) the error of the total energy assignment is dominated by the dependence on the hadronic interaction model, and is of the order of 5%. At lower energy (~10^17-10^18 eV), the uncertainty of the energy determination due to the limited knowledge of the primary cosmic ray composition is more important. The distribution of depth of shower maximum is discussed as a measure of the proton-air cross section. Uncertainties in a possible experimental measurement of this cross section introduced by intrinsic shower fluctuations, the model of hadronic interactions, and the unknown mixture of primary nuclei in the cosmic radiation are numerically evaluated.Comment: 12 pages, 11 figures, 4 table

    Oxygen equilibrium curve of normal human blood and its evaluation by Adair's equation

    Get PDF
    Oxygen equilibrium curves of fresh, normal human blood have been measured by new methods which allow the control of pH, pCO2, and 2,3-diphosphoglycerate and which yield higher accuracy at the extremes of saturation than was possible previously. The curve determined by these techniques lies slightly to the right of the standard curve of Roughton et al. (Roughton, F.J.W., Deland, E.C., Kernohan, J.C., and Severinghaus, J.W. (1972) in Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status (Astrup, P., and R\uf8rth, M., eds) pp. 73-83, Academic Press, New York). The greatest difference is at low oxygen saturation, probably owing to the fact that the latter data were obtained under conditions which would lead to depletion of cellular 2,3-diphosphoglycerate. The range of p50 (oxygen pressure at half-saturation) values for four normal subjects was 28.3 mm Hg to 29.0 mm Hg. Adair's stepwise oxygenation scheme has been used to analyze the curves with the result that a1 = 0.1514 X 10(-1) (+/- 10%) mm-1; a2 = 0.9723 X 10(-3) (+/- 8%) mm-2; a3 = 0.1703 X 10(-3) (+/- 50%) mm-3; a4 = 0.1671 X 10(-5) (+/- 2%) mm-4 for the best of four data sets. Because these constants are very sensitive to changes in the shape of the oxygenation curve, this analysis is much more useful than p50 measurements in the investigation of the various allosteric effectors of the function of hemoglobin within the red cell

    Integrated Land Use-Transport Model System with Dynamic Time-Dependent Activity-Travel Microsimulation

    Get PDF
    The development of integrated land use-transport model systems has long been of interest because of the complex interrelationships between land use, transport demand, and network supply. This paper describes the design and prototype implementation of an integrated model system that involves the microsimulation of location choices in the land use domain, activity-travel choices in the travel demand domain, and individual vehicles on networks in the network supply modeling domain. Although many previous applications of integrated transport demand-supply models have relied on a sequential coupling of the models, the system presented in this paper involves a dynamic integration of the activity-travel demand model and the dynamic traffic assignment and simulation model with appropriate feedback to the land use model system. The system has been fully implemented, and initial results of model system runs in a case study test application suggest that the proposed model design provides a robust behavioral framework for simulation of human activity-travel behavior in space, time, and networks. The paper provides a detailed description of the design, together with results from initial test runs

    Parton distributions in the virtual photon target up to NNLO in QCD

    Full text link
    Parton distributions in the virtual photon target are investigated in perturbative QCD up to the next-to-next-to-leading order (NNLO). In the case Λ2P2Q2\Lambda^2 \ll P^2 \ll Q^2, where Q2-Q^2 (P2-P^2) is the mass squared of the probe (target) photon, parton distributions can be predicted completely up to the NNLO, but they are factorisation-scheme-dependent. We analyse parton distributions in two different factorisation schemes, namely MSˉ\bar{\rm MS} and DISγ{\rm DIS}_{\gamma} schemes, and discuss their scheme dependence. We show that the factorisation-scheme dependence is characterised by the large-xx behaviours of quark distributions. Gluon distribution is predicted to be very small in absolute value except in the small-xx region.Comment: 28 pages, 5 figures, version to appear in Eur. Phys. J.

    Vacuum oscillation solution to the solar neutrino problem in standard and non-standard pictures

    Get PDF
    The neutrino long wavelength (just-so) oscillation is revisited as a solution to the solar neutrino problem. We consider just-so scenario in various cases: in the framework of the solar models with relaxed prediction of the boron neutrino flux, as well as in the presence of the non-standard weak range interactions between neutrino and matter constituents. We show that the fit of the experimental data in the just-so scenario is not very good for any reasonable value of the 8B^8B neutrino flux, but it substantially improves if the non-standard τ\tau-neutrino--electron interaction is included. These new interactions could also remove the conflict of the just-so picture with the shape of the SN 1987A neutrino spectrum. Special attention is devoted to the potential of the future real-time solar neutrino detectors as are Super-Kamiokande, SNO and BOREXINO, which could provide the model independent tests for the just-so scenario. In particular, these imply specific deformation of the original solar neutrino energy spectra, and time variation of the intermediate energy monochromatic neutrino (7Be^7Be and peppep) signals.Comment: Latex, 14 pages, 9 figures (avalilable by fax or postscript files requested to [email protected]) -- some textual and Latex errors are corrected and few references adde

    Novel universality class of absorbing transitions with continuously varying critical exponents

    Full text link
    The well-established universality classes of absorbing critical phenomena are directed percolation (DP) and directed Ising (DI) classes. Recently, the pair contact process with diffusion (PCPD) has been investigated extensively and claimed to exhibit a new type of critical phenomena distinct from both DP and DI classes. Noticing that the PCPD possesses a long-term memory effect, we introduce a generalized version of the PCPD (GPCPD) with a parameter controlling the memory effect. The GPCPD connects the DP fixed point to the PCPD point continuously. Monte Carlo simulations show that the GPCPD displays novel type critical phenomena which are characterized by continuously varying critical exponents. The same critical behaviors are also observed in models where two species of particles are coupled cyclically. We suggest that the long-term memory may serve as a marginal perturbation to the ordinary DP fixed point.Comment: 13 pages + 10 figures (Full paper version
    corecore