1,055 research outputs found

    A New Family of Covariate-Adjusted Response Adaptive Designs and their Asymptotic Properties

    Full text link
    It is often important to incorporating covariate information in the design of clinical trials. In literature, there are many designs of using stratification and covariate-adaptive randomization to balance on certain known covariate. Recently Zhang, Hu, Cheung and Chan (2007) have proposed a family of covariate-adjusted response-adaptive (CARA) designs and studied their asymptotic properties. However, these CARA designs often have high variabilities. In this paper, we propose a new family of covariate-adjusted response-adaptive (CARA) designs. We show that the new designs have smaller variabilities and therefore more efficient

    Public Benefits of Undeveloped Lands on Urban Outskirts: Non-Market Valuation Studies and their Role in Land Use Plans

    Get PDF
    Over the past three decades, the economics profession has developed methods for estimating the public benefits of green spaces, providing an opportunity to incorporate such information into land-use planning. While federal regulations routinely require such estimates for major regulations, the extent to which they are used in local land use plans is not clear. This paper reviews the literature on public values for lands on urban outskirts, not just to survey their methods or empirical findings, but to evaluate the role they have played--or have the potential to play-- in actual land use plans. Based on interviews with authors and representatives of funding agencies and local land trusts, it appears that academic work has had a mixed reception in the policy world. Reasons for this include a lack of interest in making academic work accessible to policy makers, emphasizing revealed preference methods which are inconsistent with policy priorities related to nonuse values, and emphasis on benefit-cost analyses. Nevertheless, there are examples of success stories that illustrate how such information can play a vital role in the design of conservation policies. Working Paper 07-2

    Meta-analysis of continuous outcomes: using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment-by-baseline modification.

    Get PDF
    Meta-analysis of individual participant data (IPD) is considered the "gold-standard" for synthesizing clinical study evidence. However, gaining access to IPD can be a laborious task (if possible at all) and in practice only summary (aggregate) data are commonly available. In this work we focus on meta-analytic approaches of comparative studies where aggregate data are available for continuous outcomes measured at baseline (pre-treatment) and follow-up (post-treatment). We propose a method for constructing pseudo individual baselines and outcomes based on the aggregate data. These pseudo IPD can be subsequently analysed using standard analysis of covariance (ANCOVA) methods. Pseudo IPD for continuous outcomes reported at two timepoints can be generated using the sufficient statistics of an ANCOVA model i.e., the mean and standard deviation at baseline and follow-up per group, together with the correlation of the baseline and follow-up measurements. Applying the ANCOVA approach, which crucially adjusts for baseline imbalances and accounts for the correlation between baseline and change scores, to the pseudo IPD results in identical estimates to the ones obtained by an ANCOVA on the true IPD. In addition, an interaction term between baseline and treatment effect can be added. There are several modelling options available under this approach, which makes it very flexible. Methods are exemplified using reported data of a previously published IPD metaanalysis of 10 trials investigating the effect of antihypertensive treatments on systolic blood pressure, leading to identical results compared with the true IPD analysis and of a meta-analysis of fewer trials, where baseline imbalance occurred. This article is protected by copyright. All rights reserved

    Non-monotonic variation with salt concentration of the second virial coefficient in protein solutions

    Full text link
    The osmotic virial coefficient B2B_2 of globular protein solutions is calculated as a function of added salt concentration at fixed pH by computer simulations of the ``primitive model''. The salt and counter-ions as well as a discrete charge pattern on the protein surface are explicitly incorporated. For parameters roughly corresponding to lysozyme, we find that B2B_2 first decreases with added salt concentration up to a threshold concentration, then increases to a maximum, and then decreases again upon further raising the ionic strength. Our studies demonstrate that the existence of a discrete charge pattern on the protein surface profoundly influences the effective interactions and that non-linear Poisson Boltzmann and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory fail for large ionic strength. The observed non-monotonicity of B2B_2 is compared to experiments. Implications for protein crystallization are discussed.Comment: 43 pages, including 17 figure

    Electron correlation vs. stabilization: A two-electron model atom in an intense laser pulse

    Full text link
    We study numerically stabilization against ionization of a fully correlated two-electron model atom in an intense laser pulse. We concentrate on two frequency regimes: very high frequency, where the photon energy exceeds both, the ionization potential of the outer {\em and} the inner electron, and an intermediate frequency where, from a ``single active electron''-point of view the outer electron is expected to stabilize but the inner one is not. Our results reveal that correlation reduces stabilization when compared to results from single active electron-calculations. However, despite this destabilizing effect of electron correlation we still observe a decreasing ionization probability within a certain intensity domain in the high-frequency case. We compare our results from the fully correlated simulations with those from simpler, approximate models. This is useful for future work on ``real'' more-than-one electron atoms, not yet accessible to numerical {\em ab initio} methods.Comment: 8 pages, 8 figures in an extra ps-file, submitted to Phys. Rev. A, updated references and shortened introductio

    On the Influence of Pulse Shapes on Ionization Probability

    Get PDF
    We investigate analytical expressions for the upper and lower bounds for the ionization probability through ultra-intense shortly pulsed laser radiation. We take several different pulse shapes into account, including in particular those with a smooth adiabatic turn-on and turn-off. For all situations for which our bounds are applicable we do not find any evidence for bound-state stabilization.Comment: 21 pages LateX, 10 figure

    MHCII-independent CD4(+) T cells protect injured CNS neurons via IL-4

    Get PDF
    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell-mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4-producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4-deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4-deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell-derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4-producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration
    • …
    corecore