488 research outputs found

    Blood Pressure and Job Domains Among Hotel Housekeepers

    Full text link
    Hotel housekeepers have challenging working conditions, putting them at risk for poor health such as hypertension. Despite their risks, few studies have measured their blood pressure (BP). The purpose of this study was to explore hotel housekeepers’ blood pressure and the associations between work and BP. Methods: A community engagement approach was used to recruit study participants. Data sources included questionnaires, and BP measurement. Results: Over 25% of the 39 hotel housekeepers reported hypertension diagnosis and/or antihypertensive medication used. Across the job domains, job satisfaction was correlated with diastolic BP, and workload was correlated with systolic BP. There were difference in blood pressure reading, diagnosis and job domains between workers affiliated with union and those with no union affiliation. Discussion: Hypertension is a major concern among this worker group and warrants further investigation. Studies targeting union and non-union workers are needed, given their differences. Researchers will likely benefit from a community engagement approach with hotel housekeepers

    Comparative Analyses of Zebrafish Anxiety-Like Behavior Using Conflict-Based Novelty Tests

    Get PDF
    Modeling of stress and anxiety in adult zebrafish (Danio rerio) is increasingly utilized in neuroscience research and central nervous system (CNS) drug discovery. Representing the most commonly used zebrafish anxiety models, the novel tank test (NTT) focuses on zebrafish diving in response to potentially threatening stimuli, whereas the light-dark test (LDT) is based on fish scototaxis (innate preference for dark vs. bright areas). Here, we systematically evaluate the utility of these two tests, combining meta-analyses of published literature with comparative in vivo behavioral and whole-body endocrine (cortisol) testing. Overall, the NTT and LDT behaviors demonstrate a generally good cross-test correlation in vivo, whereas meta-analyses of published literature show that both tests have similar sensitivity to zebrafish anxiety-like states. Finally, NTT evokes higher levels of cortisol, likely representing a more stressful procedure than LDT. Collectively, our study reappraises NTT and LDT for studying anxiety-like states in zebrafish, and emphasizes their developing utility for neurobehavioral research. These findings can help optimize drug screening procedures by choosing more appropriate models for testing anxiolytic or anxiogenic drugs

    Housing Conditions Differentially Affect Physiological and Behavioural Stress Responses of Zebrafish, as well as the Response to Anxiolytics

    Get PDF
    Zebrafish are a widely utilised animal model in developmental genetics, and owing to recent advances in our understanding of zebrafish behaviour, their utility as a comparative model in behavioural neuroscience is beginning to be realised. One widely reported behavioural measure is the novel tank-diving assay, which has been often cited as a test of anxiety and stress reactivity. Despite its wide utilisation, and various validations against anxiolytic drugs, reporting of pre-test housing has been sparse in the literature. As zebrafish are a shoaling species, we predicted that housing environment would affect their stress reactivity and, as such, their response in the tank-diving procedure. In our first experiment, we tested various aspects of housing (large groups, large groups with no contact, paired, visual contact only, olfactory contact only) and found that the tank diving response was mediated by visual contact with conspecifics. We also tested the basal cortisol levels of group and individually housed fish, and found that individually housed individuals have lower basal cortisol levels. In our second experiment we found ethanol appeared to have an anxiolytic effect with individually housed fish but not those that were group housed. In our final experiment, we examined the effects of changing the fishes' water prior to tank diving as an additional acclimation procedure. We found that this had no effect on individually housed fish, but appeared to affect the typical tank diving responses of the group housed individuals. In conclusion, we demonstrate that housing represents an important factor in obtaining reliable data from this methodology, and should be considered by researchers interested in comparative models of anxiety in zebrafish in order to refine their approach and to increase the power in their experiments

    Comparative Analyses of Zebrafish Anxiety-Like Behavior Using Conflict-Based Novelty Tests

    Full text link
    Modeling of stress and anxiety in adult zebrafish (Danio rerio) is increasingly utilized in neuroscience research and central nervous system (CNS) drug discovery. Representing the most commonly used zebrafish anxiety models, the novel tank test (NTT) focuses on zebrafish diving in response to potentially threatening stimuli, whereas the light-dark test (LDT) is based on fish scototaxis (innate preference for dark vs. bright areas). Here, we systematically evaluate the utility of these two tests, combining meta-analyses of published literature with comparative in vivo behavioral and whole-body endocrine (cortisol) testing. Overall, the NTT and LDT behaviors demonstrate a generally good cross-test correlation in vivo, whereas meta-analyses of published literature show that both tests have similar sensitivity to zebrafish anxiety-like states. Finally, NTT evokes higher levels of cortisol, likely representing a more stressful procedure than LDT. Collectively, our study reappraises NTT and LDT for studying anxiety-like states in zebrafish, and emphasizes their developing utility for neurobehavioral research. These findings can help optimize drug screening procedures by choosing more appropriate models for testing anxiolytic or anxiogenic drugs. © 2017, Mary Ann Liebert, Inc.The study was coordinated through the International Zebrafish Neuroscience Research Consortium (ZNRC), and this collaboration was supported by St. Petersburg State University Intramural Research program (DMM, EVK, AVK), Ural Federal University (AVK), Guangdong Ocean University (CS, AVK), the University of Passo Fundo (LJGB), CNPq grant 470260/2013 (LJGB) and CNPq research fellowships 301992/2014-2 (LJGB) and 307595/2015-3 (DBR). The funders had no involvement in the study design, data collection or analysis, and manuscript preparation. AVK is the Chair of ZNRC, and his research is supported by the Russian Foundation for Basic Research (RFBR) grant 16-04-00851. The authors thank Mr Rodrigo Zanandrea (University of Passo Fundo, Brazil) for his assistance with zebrafish cortisol analyses
    corecore