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Abstract 

 

Modeling of stress and anxiety in adult zebrafish (Danio rerio) is increasingly utilized in neuroscience 

research and CNS drug discovery. Representing the most commonly used zebrafish anxiety models, 

the novel tank test (NTT) focuses on zebrafish diving in response to potentially threatening stimuli, 

whereas the light-dark test (LDT) is based on fish scototaxis (innate preference for dark vs. bright 

areas). Here, we systematically evaluate the utility of these two tests, combining meta-analyses of 

published literature with comparative in-vivo behavioral and whole-body endocrine (cortisol) testing. 

Overall, the NTT and LDT behaviors demonstrate a generally good cross-test correlation in-vivo, 

whereas meta-analyses of published literature shows that both tests have similar sensitivity to 

zebrafish anxiety-like states. Finally, NTT evokes higher levels of cortisol, likely representing a more 

stressful procedure than LDT. Collectively, our study reappraises NTT and LDT for studying anxiety-

like states in zebrafish, and emphasizes their developing utility for neurobehavioral research. These 

finding can help optimize drug screening procedures by choosing more appropriate models for testing 

anxiolytic or anxiogenic drugs. 

 

Keywords: zebrafish; anxiety-like behavior; behavioral phenotyping; the novel tank test; the light-

dark test 
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1. Introduction 

Evoked in response to novel, potentially dangerous situations, anxiety is a natural emotion 

which is critical for the organism to survive 1, 2. However, anxiety may also be pathological,   

appearing in inappropriate contexts and reaching high levels that disrupt normal life 3. Anxiety 

disorders (ADs) are a diverse group of mental diseases defined by excessive worries or fears 4. 

Widespread globally 5, ADs represent the most prevalent psychiatric conditions, and may trigger 

other psychiatric disorders, such as depression and addiction 6. Pathological anxiety is caused by 

aberrant ‘emotionality’ brain circuits, including the limbic system and cortex 3, 7. However, neural 

mechanisms of ADs remain poorly understood, necessitating novel experimental approaches and 

theoretical concepts 8-11.  

Animal experimental models, especially rodent paradigms, are an indispensable tool for 

understanding the basic neurobiology of ADs 10, 12. Reflecting the importance of translational, cross-

species analyses of neural phenotypes 8, 13-15, there is also a growing interest in widening the spectrum 

of model species in neurobehavioral research 9, 16-18. For example, adult zebrafish (Danio rerio) are 

rapidly emerging as a promising model organism to study anxiety- and other stress-related conditions 

9, 19, 20. Among multiple behavioral tests and models 21-25 (Table 1), the novel tank (NTT) and the 

light-dark (LDT) tests are the two most popular experimental paradigms of zebrafish anxiety 26, 27.  

1.1. The novel tank test (NTT) 

Based on geotaxis - an innate escape ‘diving‘ behavior of fish in novel environments – the 

novel tank test (NTT) has long been used to assess adult zebrafish behaviors 21 and drug responses 

20. Representing a conceptual analog of the rodent open field (OF) paradigm, NTT evokes 

motivational conflict between the ‘protective’ diving behavior and subsequent vertical exploration 28. 

Indeed, when placed in novel environments, zebrafish initially spent more time at the bottom, reduce 

‘top’ swimming, and exhibit more erratic movements and freezing/immobility episodes 29. Later, due 

to habituation to the NTT novelty, zebrafish gradually explore the top area (potentially more 

dangerous for zebrafish in their natural habitats due to the presence of fish or bird predators). Stress 

and pharmacological agents can modulate these zebrafish NTT behaviors 30, 31, as anxiolytic drugs 
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(e.g., buspirone 32, chronic fluoxetine or diazepam 33, 34) tend to increase time spent in top, whereas 

anxiogenics promote diving, immobility and erratic movements 31. Successfully applied to NTT, 

modern video-tracking techniques have markedly improved testing zebrafish behavior by reducing 

data processing time, increasing the ability to register more diverse parameters of locomotion as well 

as to analyze them off-line, objectively and simultaneously 29, 35-38. 

Typically, the NTT apparatus consists of transparent narrow trapezoidal or rectangular tank 

divided into two equal halves either virtually  39 or with horizontal line marked directly on the wall 

40. The parameters analyzed in NTT target two major phenotypic domains - the exploration and 

locomotion 41. The main NTT anxiety-related endpoints are time spent in the upper/bottom zone, the 

latency to enter the top, the number of crossings between the zones, as well as the number and 

duration of freezing (a total absence of movement, except for the gills and eyes) and erratic 

movements (sharp changes in direction and velocity) 40, 42. Locomotor phenotypes can be assessed by 

recording various automated zebrafish NTT endpoints, including distance traveled, absolute or 

average turn angle, average and maximal swimming speed, meandering or the number of 360o 

rotations 29. Reduced vertical NTT exploration may also represent inhibited swimming activity in the 

presence of sedative agents (e.g., high sedative concentrations of ethanol) and not necessarily reflect 

increased anxiety-like states 43. Conversely, a greater exploration of the top can be due to enhanced 

locomotion, a phenotype usually observed after exposure to psychostimulant or hallucinogenic drugs 

44-46. Therefore, evaluating more than one endpoint is needed to judge whether the effect is locomotor 

or anxio-tropic. Thus, there is a great value in assessing locomotor parameters of zebrafish during 

novelty stress in NTT using automated video tracking software and 3D reconstruction plots of 

behavior as neurophenotyping tools 35, 47.  

Zebrafish also demonstrate behavioral differences in the NTT depending on their strain, sex, 

age 27, 48 and housing conditions 49. For example, fish exposed to ethanol show mild hyperlocomotion 

in the home tank water, but display increased anxiety-like behavior with unaltered locomotion in 

newly replaced water 50. The apparatus size and shape also modulate fish behavioral responses in this 

model, as zebrafish constantly housed in a narrow tank identical to the NTT show no NTT-specific 
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behaviors during testing, including absent diving response or changes in swimming speed 32. 

However, the main stimuli controlling zebrafish NTT diving responses remain unclear 51. In the wild, 

zebrafish feeds in the water column, and therefore their vertical distribution is a trade-off between 

feeding and predator avoidance 52. While exposure to fish predators or their models may unalter 

zebrafish bottom-dwelling 35, 53-55, presenting a computer-animated image of a bird silhouette strongly 

increases their diving response 56. Moreover, when fish are exposed to a tank with two compartments 

differing in real and perceived depth, the preference is observed for the side allowing further escape 

from the surface, but not the side with closer proximity to the substrate 57, collectively suggesting that 

NTT diving is an escape from the water surface rather than approaching the bottom. 

1.2. The light-dark test (LDT) 

The LDT is also widely used in zebrafish, since adult fish avoid brightly lit areas and spend 

more time in the dark 22, 58. This behavior is associated with the natural tendency of wild zebrafish to 

show overt scototaxis, thereby facilitating crypsis (avoidance the detection by other animals). Since 

adequate response to external stimuli is crucial for animal survival, zebrafish light avoidance rises 

from morning to evening, but decreases at night 59. Various stressors (e.g., 60) or anxiogenic 

substances (e.g., 26, 61) predictably increase time spent in dark, allowing the LDT to evaluate anxiety-

related behaviors and drugs. Other main endpoints used in this test are the number of total transitions 

between the two compartments, latency to enter the white area, the number of risk assessment 

episodes (fast entries to the lit area followed by re-entries to the dark, or as partial entries to the white), 

thigmotaxis in the white area, and other behavioral endpoints (e.g., erratic swimming and freezing) 

similar to those recorded in the NTT 62. 

The predominantly accepted interpretation of LDT is that adult zebrafish show robust dark 

preference in the test (note, however, that zebrafish larvae have reversed light preference 63, 64). A 

typical LDT apparatus is a rectangular glass or acryl tank consisting of two equal vertical portions: 

black and white or black and transparent chambers 44, 65, 66. The color of the lighter portion (white vs. 

transparent) can change preference, as animals tend to prefer the transparent vs. the black 

compartment 65, 67. Another modification of the preference paradigm apparatus is the light dark plus 
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maze with transparent walls and black or white arms’ floor coloration 68. Size of the light/dark box 

also usually differs markedly between the laboratories. Parts of the preference tank can be divided 

with a grey divider (after habituation, fish are able to swim between light and dark areas freely without 

a sliding door) 69, 70 or have no physical barrier 71, 72. Considering that the currently available software 

tools do not properly detect animal in the black compartments, their behaviors are usually recorded 

in the light chamber, or using a gray floor (which may per se influence the behavior). Like for the 

NTT, the stimulus control is not fully established in the LDT 51. For example, varying light levels or 

color of the white compartment and intra-/inter-session habituation data suggest that zebrafish LDT 

behavior is not driven solely by white aversion (photophobia) or scototaxis, but is based on approach-

avoidance conflict 51. As a result, it remains unclear whether the LDT and NTT may target different 

aspects of anxiety-like behavior, or different levels of anxiety-like states, or both. Here, we 

systematically compare these commonly used aquatic tests and evaluate their utility in characterizing 

zebrafish behavioral syndromes. 

2. Materials and Methods 

2.1. Behavioral meta-analyses  

Although the question of data comparison and testing priority was already raised for NTT and 

LDT 51, 73, their systematic comparative analyses have not been performed. Addressing this 

knowledge gap here, we first analyzed the literature, focusing on NTT and LDT studies of various 

anxiolytic, anxiogenic and toxic substances (Table 2). The inclusion criteria required 1) both tests be 

used in the same study available in PubMed; 2) testing the same concentrations of the drug(s); and 3) 

group size, mean and SEM/SD values be indicated for each group. Because of multiple parameters 

measured in NTT and LDT, we chose two most frequently measured endpoints that can also be 

considered functionally analogous: the time spent in, and the number of transitions to, the top half of 

NTT or the lit half of the LDT, respectively. For these endpoints, we calculated Standardized Mean 

Difference (SMD, Fig. 1) commonly used for the effect size estimation in meta-analyses 74. As some 

mean and SEM for SMD calculations were represented in the graphs in the original publications, we 

performed their accurate quantification using the ImageJ software 75. Statistical analysis was 
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conducted using the metafor package 76 for R version 3.2.5 77. We used a mixed-effects model using 

assay as a moderator to indicate a possible advantage of using the NTT or the LDT. While it is 

possible that treatment differences (i.e., drug, concentration/dose, etc.) are important moderators, we 

were interested in the main effect of any treatment on the behavioral endpoints, and in differences 

between the NTT and LDT. Therefore, using assay as a moderator, such as in our present analyses, 

was expected to be able to uncover differences in sensitivity between the two tests (see further). 

2.2. Cortisol responses to NTT and LDT procedures 

Complementing behavioral endpoints, various physiological biomarkers are indispensable for 

clinical and preclinical AD research 78-80. In a separate in-vivo experiment we directly compared 

physiological consequences of the two tests, using ELISA assays to access whole-body cortisol levels 

in adult zebrafish following their acute single NTT or LDT exposure 40. Briefly, a total of 45 adult 

zebrafish (~50/50 male/female ratio) of the wild-type short-fin strain were housed 1 fish/L in 20-L 

tanks equipped with biological filters at the University of Passo Fundo (Passo Fundo, Brazil), under 

constant aeration and a 14-h light:10 h dark photoperiod. Water temperature was maintained at 27 ± 

0.3 oC; with pH kept at 7.0 ± 0.05, dissolved oxygen kept at 6.0 ± 0.05 mg/L, total ammonia at <0.01 

mg/L, total hardness at 6 mg/L, and alkalinity at 22 mg/L CaCO3. The experiment utilized three 

groups of fish: controls (experimentally naïve, unexposed fish), NTT- and LDT-exposed fish (which 

remained in their tests for 10 min, and were then immediately sacrificed for cortisol analysis using 

ELISA). Fish were gently transferred individually (using the net) from their hometanks to the testing 

apparatus (NTT or LDT) for 10 min. The NTT represented a glass tank 24 × 8 × 20 cm (width × depth 

× height) 60. The LDT apparatus consisted of a glass tank (18 × 9 × 7 cm; width × depth × high) 

divided by a sliding guillotine-type partition (9 × 7 cm) in two equally sized dark and white 

compartments, filled with water 60. Fish were individually placed in the light zone of the apparatus, 

and evaluated for 10 min. Behavioral results were subjected to one-way ANOVA, and were further 

analyzed by Tukey post-hoc test to compare all three groups (Fig. 3). The two tests were further 

compared between themselves by the U-test (Fig. 3). 

2.3. Correlational analyses of behaviors generated in NTT and LDT 
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Commonly used in neurobehavioral research, correlational analyses were next applied to the 

NTT and LDT data collected from a large cohort of male and female wild-type zebrafish housed in 

Federal University of Sul e Sudeste do Para (Maraba, Brazil). While the test battery effects were 

reported as minimal for zebrafish 27, the testing order was randomized. Since animals were kept in 

single groups, no sequence generation method was used. The animals came from different tanks, and 

were randomly drawn. Similar to 81, correlations were taken between measurements of time and 

transitions for each test. Time on top and time on white constituted a first set of “operational 

definitions” of anxiety-like behavior in theses assays, and transitions to top and transitions to white 

constituted the second set of operational definitions. Overall, we found convergence for the first set 

of operational definitions (“monotrait-heteromethod”, marked by A in Table 3), as the measures 

moderately but significantly correlated. The second set of operational definitions revealed a strong 

significant correlation, supporting the possibility that both measures in the two tests reflect the 

similar/overlapping behavioral trait. Another type of correlation (“heterotrait-monomethod”, marked 

by B in Table 3) refers to the relationship between the different operational definitions of the same 

trait measured using the same method, and for both assays, were non-significant. The last type of 

correlation (“heterotrait-heteromethod”, C in Table 3) examined to the relationship between activity 

in one assay and occupancy of the less protected area in the other. 

3. Results 

3.1. NTT and LDT sensitivity to stress and CNS drugs: behavioral meta-analyses  

 The omnibus meta-analysis performed here indicated an effect of drugs/treatments on the time 

spent in the top/lit part (Fig. 1), as the intercept for the mixed-effects model was significant (β = 

1.0923, CI 95%[0.2241, 1.9604]; z = 2.446, p = 0.0137) but the test for the moderators was not (QM(df 

= 1) = 0.0204, p = 0.8865). This suggests that in the specific dataset of drugs and treatments acting on 

different targets, the NTT and the LDT remained equally sensitive to the treatments if the 

experimental conditions (e.g., concentrations) were the same (β = -0.04, CI 95% [-0.5899, 0.5098]; z 

= -0.1428, p = 0.8865). The lack of significance was also characteristic for comparisons in the drug 

groups, although effects differed for LDT and NTT when transitions were considered (Fig. 1), since 
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treatments increased transitions to white in LDT (β = 4.67, CI 95% [2.44, 6.9], z = 4.1051, p < 0.0001) 

but not to top in NTT (β =-3.85, CI 95% [-9.11, 1.42], z = -1.4325, p = 0.1520). The omnibus test 

revealed a significant effect of the moderators (QM(df = 1) = 9.1854, p = 0.0024), with a significant 

assay effect (z = 3.0307, p = 0.0024). Analyzing SMDs between the two endpoints themselves 

revealed some controversy in the effect direction (e.g., for fluoxetine or pCPA 34). As expected for 

not including treatment as a moderator, the heterogeneity of the results was significantly high (τ² = 

1.8160±0.2886; I² = 89.1%, QE(df = 104) = 747.6830, p < 0.0001). Although the lack of significant 

SMD differences between the most frequently measured parameter (time in aversive portions) was 

unexpected, it suggests that none of the two tests produces higher effect sizes on these parameters, 

thus making the two tests complementary, rather interchangeable. Finally, funnel plot analysis (Fig. 

2) also indicates considerable publication bias towards significant findings, which should be 

considered and, eventually, corrected in future research. 

3.2. Cortisol responses to NTT and LDT 

Overall, while both tests were more stressful vs. control, NTT was significantly more stressful 

than LDT, based on test-evoked cortisol responses (Fig. 3). This result is important and predictable, 

given the rigorous nature of NTT diving responses vs. a more ‘protective’ LDT choice situation. 

Moreover, this also suggests that while the measures of bottom and dark preference in these two 

paradigms can be conceptually similar, they may also differ in the levels of evoked stress and/or in 

their ability to act as tests (i.e., to measure different behaviors). Clearly, further studies are needed to 

examine the underlying stress responses and their neural circuitry in both models. 

3.3. Correlations between behaviors generated in NTT and LDT 

Overall, correlations between transitions to white and time on top were not significant in this 

analysis, whereas correlations between transitions to top and time in white were significant, but 

smaller than the monotrait-heteromethod correlations (Table 3). Thus, correlations in the “validity 

diagonal” A were higher than the heterotrait-heteromethod and heterotrait-monomethod correlations, 

which reflect convergent and discriminant validity 82. Overall, these results support the notion that 
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the operational definitions of anxiety in LDT and NTT seem to converge on the same zebrafish 

behavioral trait. 

4. Discussion 

Despite the advantages of using fish for modeling mental disorders, all animal models are 

limited since they cannot fully recapitulate the complex repertoire of human behavior 17. Furthermore, 

it can be difficult to distinguish between various subtypes of animal anxiety (e.g., generalized anxiety 

vs. fear), and they have not yet been dissected in zebrafish 51. In addition, despite shared construct 

rationale and targeting similar evolutionarily-conserved traits in fish and rodents 19, test- and species- 

differences may further complicate data interpretation and analyses. One example is 3D tracking of 

zebrafish movement 35, 83 in NTT (which enables quantification of vertical geotaxic anxiety-like 

response), but is impossible to assess in 2D-based OF (focusing on thigmotaxis instead). On the one 

hand, LDT typically measures a limited number of behavioral endpoints, enabling a more focused 

characterization of anxiety-related phenotypes. However, LDT does not usually track zebrafish in 

3D, and therefore misses endpoints related to angular velocity or turn angle. Thus, while NTT may 

have an added value of registering more behavioral endpoints and phenomena, LDT can be quite 

useful for its high-throughput and lower stress. Furthermore, as many drugs modifying anxiety 

display characteristic U-shaped dose-response curve for commonly used endpoints 84, the range of 

concentrations used for drug screening should be sufficient to account for possible effect increase and 

dropdown. Clearly, this may slow down the screening process, but will help minimize type II errors 

in CNS drug discovery. 

Another aspect that merits further consideration is the extent of automation that can be 

achieved using these approaches, and whether this represents a drawback, especially given the 

unrivalled potential of zebrafish for high-throughput analysis. Indeed, while without the potential for 

automation, there may be strong between-lab reliability for these measures, other extraneous factors 

(such as housing/husbandry and testing procedures) may trigger such variance as well. Thus, we 

strongly support further automation in studies, and welcome their further inclusion in subsequent 

meta-analyses, in addition to offering a clear experimental advantage of assessing reliably a wider 
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range of behavioral analysis in a shorter period of time. Likewise, another factor that is largely 

overlooked in zebrafish literature is the differences in basal locomotor responses by individual fish, 

and how this may affect the typical responses behavioral phenotypes. While individual differences in 

zebrafish behaviors do exist, this aspect was not in the scope of our study, and was somewhat 

mitigated here by using relatively large n’s in our cohorts. Nevertheless, we fully recognize the 

importance of individual differences in zebrafish NTT and LDT behaviors, and acknowledge the fact 

that automation of fish testing may not only reduce ‘phenotypic noise’ by better controlling the testing 

environments, but can also help better detect meaningful patterns in individual differences for 

multiple computer-generated parameters.  

In summary, as NTT and LDT remain widely used tests of zebrafish anxiety, they are often 

considered ‘similar’ in their construct, face and predictive validity. Analyzing their effect sizes across 

multiple studies, including data from our own group, we found their comparable sensitivity, based on 

similar SMD values for their main endpoints. Thus, the two tests can be both needed for assessing 

zebrafish anxiety-like behaviors and drug screening, reinforcing Prof. Slava Lapin’s famous notion 

“one experiment is not an experiment, and one behavioral test is not a test”. However, although the 

cumulative responsivity of NTT and LDT to treatments appear similar, some drugs may affect one 

test more than the other. Respectively, this suggests that predictive validity of the two models may 

be somewhat different (Fig. 1). For example, as NTT also measures endpoints that are also relevant 

to other behavioral domains (e.g., locomotion or cognition/habituation), it has the advantage of 

versatility and the ability to characterize 3D locomotion 35, 71, 83. At the same time, given our 

endocrine/cortisol data (Fig. 3), it is likely that NTT also represents a more stressful procedure than 

LDT. Accordingly, this may contribute to the two tests’ differing predictive validity, as anxiogenic 

drugs may have floor effects in NTT, which can therefore be more useful for testing anxiolytics 

instead. In contrast, a seemingly ‘less aversive’ LDT may be more suitable for testing anxiogenics, 

but may exhibit more ceiling effects when screening anxiolytic drugs. Likewise, it is possible to 

suggest that the two models may differ in their ability to reflect decision-making behavior. For 

example, a more survival-driven innate ‘diving’ response may seem to be more forced upon the 
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animal by the NTT testing protocol, as compared to a less aversive LDT procedure, which affords 

the fish more time and a better control over their light-dark preference behaviors (e.g., see 85). Quite 

interesting, this hypothesis merits further scrutiny, and may help develop novel behavioral models 

beyond affective domains (e.g., targeting zebrafish impulsivity based on their NTT vs. LDT 

responses). 

Further analyses of the exact nature of stress in the two aquatic tests remains an important 

priority for zebrafish behavioral research 86, because they are both related to anxiety, but may differ 

in the domains of stress, fear, aversion, visual comprehension and decision-making. It may also 

require studies of brain activation patterns in one or another setup with paralleling the results to the 

mammalian brain studies. Such analyses have already been performed in LDT 85, implicating the 

medial zone of the dorsal telencephalic region and the dorsal nucleus of the ventral telencephalic area 

(the teleost homologs of the mammalian amygdala and striatum, respectively) in fish anxiety 

responses. It would therefore be interesting to conduct a similar study in NTT. Future dissection of 

the differences between brain activation patterns may necessitate sophisticated in-vivo imaging 

studies in freely moving animals, which can be particularly useful since the genetically encoded 

calcium reporters can be analyzed in transparent strains of zebrafish. 

Finally, with a large number of behavioral endpoints resulting from zebrafish behavioral tests 

(e.g., 35, 87, 88), the integral parameter that would consistently reflect the level of zebrafish anxiety, is 

still missing. Would it help to have such a biomarker? Clearly yes, since, for example, some of NTT 

and LDT endpoints are closely and directly related to anxiety and endocrine (cortisol) levels, and can 

have higher weight in the integral anxiety testing. Thus, the upcoming aim of zebrafish behavioral 

neuroscience can be to rank various endpoints for the overall effect appraisal, and to extract important 

biological information from those various ranked phenotypes accordingly. In other words, this may 

involve creating an integral index based on multiple factors and endpoints (somewhat similar to a 

credit score in financial world) to provide a rough estimate of fish anxiety levels, thereby empowering 

time/cost-efficient drug screening. One attempt to establish such an integral value has been made 

recently 89, using the concept of Integrated Biological Response that summarizes the range of 
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biomarkers into single star plot, that is then analyzed by square and shape. Such plots are rather visual 

and allow for input endpoints ranking and at the same time they can be expressed in the form of single 

number, enabling rapid comparison. However, a conceptually different (but equally fruitful) approach 

can be to continue to explore the potential complexity of zebrafish anxiety behavior, based on a 

theoretical possibility (not yet tested empirically) that zebrafish anxiety-like states may include 

subtypes, similar to clinical generalized anxiety- vs. fear/panic-like states, and the respective rodent 

analogous models that do distinguish these states 90-94. At the same time, it may also be possible 17, 84 

that zebrafish affective phenotypes (and their respective circuits) are merely not as complicated as in 

mammals, and may reflect broader (e.g., generalized anxiety-like) affective categories rather than 

target more specific AD subtypes, such as anxiety vs. fear/panic. 
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Figure 1. Meta-analysis results for effects of various drugs/treatments on zebrafish novel tank 

test (NTT) and light-dark test (LDT) behaviors, including the number of transitions (A) and 

time spent (B) in respective top or light areas. Data are presented as forest plots (based on 27 

studies listed in Table 1 that use both behavioral tests) for the standardized mean differences 

(SMD) for treated vs. control groups with corresponding 95% confidence intervals in the 

individual studies, based on a mixed-effects model.  

 

Figure 2. The funnel plot showing the relationships between residual values vs. standard errors 

(estimated by the mixed-effects model) in data presented in Fig. 1; bands refer to confidence 

intervals at the 90% (white area), 95% (light gray area), and 99% (dark grey area) levels.  

 

Figure 3. Whole-body cortisol levels in control vs. NTT- and LDT-tested fish assessed 

immediately after behavior test procedure (n=15 in each group). There was significant 

treatment effect by one-way ANOVA (F2, 41 = 13.14; P < 0.0001); *P<0.05, ****P<0.0001 for 

Tukey post-hoc test (left panel). The two tests also significantly differed between themselves (P 

< 0.05, U-test, right panel). 
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Table 1. Alternative tests and models available for studying zebrafish anxiety-like behaviors 

 

Test/Model Details References 

Tests (used to assess anxiety levels) 

Open field test 

 

A direct analog of rodent open field, this paradigm measures mainly horizontal 

locomotion and thigmotaxis. The apparatus can have diverse size, shape and 

color. Endpoints in this test include the time spent in the periphery or center of 

the tank (s), distance traveled in each zone in the tank (m), number of transitions 

between zones, velocity in each zone of the tank (m/s), number of freezing bouts 

and time spent frozen (s) 

24, 41, 44 

Social 

preference test 

The test has been applied to evaluate zebrafish response to con- and 

heterospecifics. Zebrafish social preference may be altered because of the effect 

of anxiety-related pharmaceutical substances or environmental stressors. 

95, 96 

Shoaling 

 

Fish are placed to the test apparatus in groups and impact of stressor or 

pharmacological manipulation are assessed measuring alterations in shoal 

cohesion (it is higher when zebrafish feel anxiety). 

23, 97 

Predator 

avoidance test 

The test examines fear- and anxiety-like behavior in the presence of a natural 

stressor. Zebrafish individually or in group are placed in one part of apparatus 

with two separate compartments, another arm contains predator (e.g., Indian leaf 

fish, Nandus nandus).  

55, 98, 99 

Predator 

exposure test 

The test is aimed at evaluation of fear- and anxiety-like behavior following a 

brief exposure to a natural predator (e.g. Indian leaf fish), its image or robotic 

models 

100 

Boldness and 

novel object 

approaching 

During the novel object test zebrafish either individually or in groups are placed 

to a cylindric tank and, after period of acclimatization, the unfamiliar object is 

added to the apparatus. Main endpoints include the latency to approach the object 

(s), frequency of approach, time spent near (within 1.5 body-lengths) the object 

(s), number of freezing bouts, and time spent frozen (s). 

 25, 101 

Emergence 

test 

This test assesses anxiety behaviors by placing animals in a reassuring chamber, 

and measuring latency to exit the chamber. 

102 

Food 

neophobia 

Avoidance of novel food, which can be assessed by measuring latency to 

approach novel food items, and frequency/duration of time spent interacting with 

novel food items  

103 

Models (used to evoke anxiety-like states) 

Beaker stress During beaker stressor protocols, an individual fish is separated from its shoal 

and confined in a 250-ml beaker filled with 100-ml of house tank water. This 

stressor markedly increases baseline cortisol levels after 15-min exposure. 

17 

Impoverished 

housing 

Housing fish singly in a barren environment increases anxiety-like behaviors in 

the NTT and LDT 

49 

Chronic stress Pathological anxiety is commonly seen in zebrafish exposed to various chronic 

stress models 

33, 104 

Social 

isolation 

Chronic social isolation decreases, while acute isolation increases anxiety levels 17, 51, 105, 106 

Genetic 

models 

Various inbred and outbred zebrafish strains with different anxiety levels 20, 86 
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Table 2. List of treatments and publications used for the analysis. 

Treatment Dose (mg/L), other details References 

Anxiolytic-like treatments   

2,5-Dimethoxy-4-bromoamphetamine (DOB) 0.05, 0.1, 0.5, 1 107 

para-Methoxyamphetamine (PMA) 0.0005, 0.005, 0.05, 0.1, 0.25, 0.5 
107

 

Buspirone 25, 50 
34 

Fluoxetine 2.5, 5, 10 
34 

 5 mg/kg long-fin and leopard strains 108
 

para-chlorophenylalanine (pCPA) 300 twice 34 

WAY 100635 0.003, 0.03 34
 

Ethanol (acute) 0.5, 1, 1.5% 72 

 0.5% 68 

Desipramine 25 68 

Nicotine 25 68 

Chlordiazepoxide 25 68 

Citalopram 100 68 

Taurine 42, 150, 400 89
 

Piracetam  200 (chronic, for 7 days) 109
 

N-acetylcysteine 0.1, 1, 10 60
 

Hallucinogenic-like treatments   

3,4-Methylenedioxymethamphetamine (MDMA)* 2.5, 5, 10 107 

Lysergic acid diethylamide (LSD)* 0.25 44 

Ibogaine* 10, 20 71 

Anxiogenic-like treatments   

SB 224289 2.5, 5 34 

1% Ethanol (chronic) withdrawal 2,6 days (1,7 days for LDT) 72 

Alarm substance Short-fin, leopard strains 61
 

Yohimbine 25 68
 

Toxic treatments   

Paraquat 20 
110

 

Methylmercury 1, 5 μg/g 62
 

Dimethyl sulfoxide (DMSO)* 0.05% 68 

Copper 0.006 111
 

 

* The drug also exerts anxiolytic-like effects in zebrafish  
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Table 3. Cross-correlations between occupancy (time on white, time on top) and locomotion 

(entries on white, entries on top) measurements in 40 adult wild-type control zebrafish tested 

in the novel tank (NTT) and light-dark (LDT) tests at the Federal University do Sul e Sudeste 

do Pará, Maraba, Brazil. Values represent Pearson’s correlation coefficients based on 

individual scores across all animals. (A) Convergence of operational definitions; (B) different 

operational definitions, same method; (C) different operational definitions, different methods 

(see text for details). 

 

Behaviors/Tests NTT time NTT transitions LDT time 

NTT transitions (B) 0.08   

LDT time (A) 0.55 (C) 0.43  

LDT transitions (C) 0.11 (A) 0.75 (B) 0.18 
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