1,320 research outputs found

    Stochastic Model for the Motion of a Particle on an Inclined Rough Plane and the Onset of Viscous Friction

    Full text link
    Experiments on the motion of a particle on an inclined rough plane have yielded some surprising results. For example, it was found that the frictional force acting on the ball is viscous, {\it i.e.} proportional to the velocity rather than the expected square of the velocity. It was also found that, for a given inclination of the plane, the velocity of the ball scales as a power of its radius. We present here a one dimensional stochastic model based on the microscopic equations of motion of the ball, which exhibits the same behaviour as the experiments. This model yields a mechanism for the origins of the viscous friction force and the scaling of the velocity with the radius. It also reproduces other aspects of the phase diagram of the motion which we will discuss.Comment: 19 pages, latex, 11 postscript figures in separate uuencoded fil

    Transparent, Lightweight, and High Strength Polyethylene Films by a Scalable Continuous Extrusion and Solid-State Drawing Process

    Get PDF
    The continuous production of transparent high strength ultra-drawn high-density polyethylene films or tapes is explored using a cast film extrusion and solid-state drawing line. Two methodologies are explored to achieve such high strength transparent polyethylene films; i) the use of suitable additives like 2-(2H-benzotriazol-2-yl)-4,6-ditertpentylphenol (BZT) and ii) solid-state drawing at an optimal temperature of 105 °C (without additives). Both methodologies result in highly oriented films of high transparency (≈91%) in the far field. Maximum attainable modulus (≈33 GPa) and tensile strength (≈900 MPa) of both types of solid-state drawn films are similar and are an order of magnitude higher than traditional transparent plastics such as polycarbonate (PC) and poly(methyl methacrylate). Special emphasis is devoted to the effect of draw down and pre-orientation in the as-extruded films prior to solid-state drawing. It is shown that pre-orientation is beneficial in improving mechanical properties of the films at equal draw ratios. However, pre-orientation lowers the maximum attainable draw ratio and as such the ultimate modulus and tensile strength of the films. Potential applications of these high strength transparent flexible films lie in composite laminates, automotive or aircraft glazing, high impact windows, safety glass, and displays

    Status and performances of the FAZIA project

    Get PDF
    FAZIA is designed for detailed studies of the isospin degree of freedom, extending to the limits the isotopic identification of charged products from nuclear collisions when using silicon detectors and CsI(Tl) scintillators. We show that the FAZIA telescopes give isotopic identification up to Z∌\sim25 with a Δ\DeltaE-E technique. Digital Pulse Shape Analysis makes possible elemental identification up to Z=55 and isotopic identification for Z=1-10 when using the response of a single silicon detector. The project is now in the phase of building a demonstrator comprising about 200 telescopes

    Angle of Repose and Angle of Marginal Stability: Molecular Dyanmics of Granular Particles

    Full text link
    We present an implementation of realistic static friction in molecular dynamics (MD) simulations of granular particles. In our model, to break contacts between two particles, one has to apply a finite amount of force, determined by the Coulomb criterion. Using a two dimensional model, we show that piles generated by avalanches have a {\it finite} angle of repose ΞR\theta_R (finite slopes). Furthermore, these piles are stable under tilting by an angle smaller than a non-zero tilting angle ΞT\theta_T, showing that ΞR\theta_R is different from the angle of marginal stability ΞMS\theta_{MS}, which is the maximum angle of stable piles. These measured angles are compared to a theoretical approximation. We also measure ΞMS\theta_{MS} by continuously adding particles on the top of a stable pile.Comment: 14 pages, Plain Te

    Slowly driven sandpile formation with granular mixtures

    Get PDF
    We introduce a one-dimensional sandpile model with NN different particle types and an infinitesimal driving rate. The parameters for the model are the N^2 critical slopes for one type of particle on top of another. The model is trivial when N=1, but for N=2 we observe four broad classes of sandpile structure in different regions of the parameter space. We describe and explain the behaviour of each of these classes, giving quantitative analysis wherever possible. The behaviour of sandpiles with N>2 essentially consists of combinations of these four classes. We investigate the model's robustness and highlight the key areas that any experiment designed to reproduce these results should focus on

    4/3-Law of Granular Particles Flowing through a Vertical Pipe

    Full text link
    Density waves of granular material (sand) flowing through a vertical pipe have been investigated. Clear density waves emerge when the cock attached to bottom end of the pipe is closed. The FFT power spectra were found to show a stable power-law form P(f)∌f−α. P(f) \sim f^{-\alpha}. The value of the exponent was evaluated as α≅4/3\alpha \cong 4/3. We also introduce a simple one-dimensional model which reproduces α=4/3\alpha = 4/3 from both simulation and theoretical analysis. (to be published in Phys.Rev.Lett.)Comment: 4 pages, 4 figures, a style fil

    Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems

    Get PDF
    We report experimental signals of Bose-Einstein condensation in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4π\pi detector array to the forward angle VAMOS magnetic spectrometer, allowed us to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. Furthermore, by means of quantum fluctuation analysis techniques, temperatures and mean volumes per particle "as seen by" bosons and fermions separately are correlated to the excitation energy of the reconstructed system. The obtained results are consistent with the production of dilute mixed (bosons/fermions) systems, where bosons experience a smaller volume as compared to the surrounding fermionic gas. Our findings recall similar phenomena observed in the study of boson condensates in atomic traps.Comment: Submitted to Phys. Rev. Lett. (december 2014

    Nuclear multifragmentation time-scale and fluctuations of largest fragment size

    Get PDF
    Distributions of the largest fragment charge, Zmax, in multifragmentation reactions around the Fermi energy can be decomposed into a sum of a Gaussian and a Gumbel distribution, whereas at much higher or lower energies one or the other distribution is asymptotically dominant. We demonstrate the same generic behavior for the largest cluster size in critical aggregation models for small systems, in or out of equilibrium, around the critical point. By analogy with the time-dependent irreversible aggregation model, we infer that Zmax distributions are characteristic of the multifragmentation time-scale, which is largely determined by the onset of radial expansion in this energy range.Comment: Accepted for publication in Physical Review Letters on 8/4/201
    • 

    corecore