11 research outputs found

    In Vitro Plant Regeneration And De Novo Differentiation Of Secretory Trichomes In Passiflora Foetida L. (passifloraceae)

    No full text
    The only species in the genus Passiflora (Passifloraceae) known to produce resin glands is P. foetida. These glands are secretory trichomes mainly present on the floral bracts and leaf stipules. The secretion produced by these glands has received attention recently due to the presence of substances with pharmacological properties. Attempts to apply in vitro cell culture methods for the large scale production of highly valuable metabolites has been rather limited due to the fact that these compounds are produced by highly differentiated secretory cells in trichomes which are seldom obtained or because differentiation is inhibited by in vitro conditions. Here we describe the in vitro plant regeneration of P. foetida obtained via organogenesis, using mature zygotic embryos as explants. Differentiated plantlets and, more important, the de novo differentiation of secretory trichomes in vitro could be observed in less than 30 days. There was a clear effect of the concentration of 2,4-dichlorophenoxyacetic acid in the culture media on the regeneration of plants and on the differentiation of glandular trichomes. Our results should be useful for the micropropagation of P. foetida, as well as for studies of the process of secretory trichome differentiation and the implemention of biotechnological methodologies for in vitro mass production of passifloricin and/or other substances present in the P. foetida resin. © 2011 Springer Science+Business Media B.V.10819199Agrawal, A.A., Induced responses to herbivory and increased plant performance (1998) Science, 279, pp. 1201-1202Bandyopadhyay, T., Gangopadhyay, G., Poddar, R., Mukherjee, K.K., Trichomes: their diversity distribution and density in acclimatization of teak (Tectona grandis L.) plants grown in vitro (2004) Plant Cell Tiss Organ Cult, 78, pp. 113-121Becerra, D.C., Forero, A.P., Góngora, G.A., Age and physiological condition of donor plants affect in vitro morphogenesis in leaf explants of Passiflora edulis f. flavicarpa (2004) Plant Cell Tissue Organ Cult, 79, pp. 87-90Bonfill, M., Mangas, S., Moyano, E., Cusido, R.M., Palazón, J., Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica (2011) Plant Cell Tiss Organ Cult, 104, pp. 61-67Braglia, L., de Benedetti, L., Giovannini, A., Nicoletti, F., Bianchini, C., Pepino, L., Mercuri, A., In vitro plant regeneration as a tool to improve ornamental characters in Passiflora species (2010) Acta Hortic, 855, pp. 47-52Dawan, S., Shasany, A.K., Naqvi, A.A., Kumar, S., Khanuja, S.P.S., Menthol tolerant clones of Mentha arvensis: approach for in vitro selection of menthol rich genotypes (2003) Plant Cell Tiss Organ Cult, 75, pp. 87-94Delbarre, A., Muller, P., Imhoff, V., Guern, J., Comparison of mechanisms controlling uptake and accumulation of 2, 4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells (1996) Planta, 198, pp. 532-541Dodsworth, S., A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem (2009) Dev Biol, 336, pp. 1-9Dornelas, M.C., Vieira, M.L.C., Plant regeneration from protoplast cultures of Passiflora edulis var. flavicarpa Deg. and P. cincinnata Mast (1993) Plant Cell Rep, 13, pp. 103-106Dornelas, M.C., Vieira, M.L.C., Tissue culture on species of Passiflora (1994) Plant Cell Tissue Organ Cult, 36, pp. 211-217Dornelas, M.C., Vieira, M.L.C., Appezzato-da-Gloria, B., Histological analysis of organogenesis and somatic embryogenesis induced in immature tissues of Stylosanthes scabra (1992) Ann Bot, 70, pp. 477-482Durkee, L.T., Baird, C.W., Cohen, P.F., Light and electron microscopy of the resin glands of Passiflora foetida (Passifloraceae) (1984) Am J Bot, 71, pp. 596-602Echeverri, F., Arango, V., Quiñones, W., Torres, F., Escobar, G., Rosero, Y., Archbold, R., Passifloricins, polyketides alpha-pyrones from Passiflora foetida (2001) Phytochemistry, 56, pp. 881-885Fernando, J.A., Vieira, M.L., Machado, S.R., Appezzato-da-Glória, B., New insight into the in vitro organogenesis process: the case of Passiflora (2007) Plant Cell Tiss Organ Cult, 91, pp. 37-44Gamborg, O.L., Miller, R.A., Ojima, K., Nutrient requirements of suspension cultures of soybean root cells (1968) Exp Cell Res, 50, pp. 151-158Garcia, R., Pacheco, G., Falcão, E., Borges, G., Mansur, E., Influence of type of explants, plant growth regulators, salt composition of basal medium, and light on callogenesis and regeneration in Passiflora suberosa L. (Passifloraceae) (2011) Plant Cell Tiss Organ Cult, 106, pp. 47-54Glover, B.J., Differentiation in plant epidermal cells (2000) J Exp Bot, 51, pp. 497-505Göpfert, J.C., Macnevin, G., Ro, D.K., Spring, O., Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes (2009) BMC Plant Biol, 9, p. 86Gordon, S.P., Heisler, M.G., Reddy, G.V., Ohno, C., Das, P., Meyerowitz, E.M., Pattern formation during de novo assembly of the Arabidopsis shoot meristem (2007) Development, 134, pp. 3539-3548Gurel, E., Yucesan, B., Aglic, E., Gurel, S., Verma, S., Regeneration and cardiotonic glycoside production in Digitalis davisiana Heywood (Alanya Foxglove) (2011) Plant Cell Tiss Organ Cult, 104, pp. 217-225Guzzo, F., Ceoldo, S., Andretta, F., Levi, M., In vitro culture from mature seeds of Passiflora species (2004) Sci Agric, 61, pp. 108-113Hamant, O., Traas, J., Boudaoud, A., Regulation of shape and patterning in plant development (2010) Curr Opin Genet Dev, 20, pp. 454-459Hare, J.D., Variation in herbivore and methyl jasmonate-induced volatiles among genetic lines of Datura wrightii (2007) J Chem Ecol, 33, pp. 2028-2043Jansen, W.A., (1962) Botanical Histochemistry: Principles and Practice, , San Francisco: WR FreemanKang, J.H., Liu, G., Shi, F., Jones, A.D., Beaudry, R.M., Howe, G.A., The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores (2010) Plant Physiol, 154, pp. 262-272Kim, T.D., Lee, B.S., Kim, T.S., Choi, Y.E., Developmental plasticity of glandular trichomes into somatic embryogenesis in Tilia amurensis (2007) Ann Bot, 100, pp. 177-183Kiselev, K.V., Tyunin, A.P., Manyakhin, A.Y., Zhuravlev, Y.N., Resveratrol content and expression patterns of stilbene synthase genes in Vitis amurensis cells treated with 5-azacytidine (2011) Plant Cell Tiss Organ Cult, 105, pp. 65-72Levin, D.A., The role of trichomes in plant defense (1973) Quart Rev Plant Biol, 48, pp. 3-15Makunga, N.P., van Staden, J., An efficient system for the production of clonal plantlets of the medicinally important aromatic plant: Salvia africana-lutea L (2008) Plant Cell Tiss Organ Cult, 92, pp. 63-72Mohamed, M.E., Hicks, R.G.T., Blakesley, D., Shoot regeneration from mature endosperm of Passiflora foetida (1996) Plant Cell Tiss Organ Cult, 46, pp. 161-164Morone-Fortunato, I., Avato, P., Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum (Link) Ietswaart (2008) Plant Cell Tiss Organ Cult, 93, pp. 139-149Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures (1962) Physiol Plant, 15, pp. 473-497Ngan, A., Conduit, R., A double-blind, placebo-controlled investigation of the effects of Passiflora incarnata (passionflower) herbal tea on subjective sleep quality (2011) Phytoter Res, , doi: 10. 1002/ptr. 3400Pati, P.K., Kaur, J., Singh, P., A liquid culture system for shoot proliferation and analysis of pharmaceutically active constituents of Catharanthus roseus (L.) G. Don (2011) Plant Cell Tiss Organ Cult, 105, pp. 299-307Petrásek, J., Friml, J., Auxin transport routes in plant development (2009) Development, 136, pp. 2675-2688Pinto, D.L.P., Barros, B.A., Viccini, L.F., Campos, J.M.S., Silva, M.L., Otoni, W.C., Ploidy stability of somatic embryogenesis-derived Passiflora cincinnata Mast. plants as assessed by flow cytometry (2010) Plant Cell Tissue Organ Cult, 103, pp. 71-79Pipino, L., Braglia, L., Giovannini, A., Fascella, G., Mercuri, A., In vitro regeneration of Passiflora species with ornamental value (2008) Propag Ornam Plants, 8, pp. 47-49Puricelli, L., Dellaica, I., Sartor, L., Garbisa, S., Caniato, R., Preliminary evaluation of inhibition of matrix-metalloproteins MMP-2 and MMP-9 by Passiflora edulis and P. foetida aqueous extracts (2003) Fitoterapia, 74, pp. 302-304Reis, L.B., Silva, M.L., Lima, A.B.P., Oliveira, M.L.P., Pinto, D.L.P., Lani, E.R.G., Otoni, W.C., Agrobacterium rhizogenes-mediated transformation of passionfruit species: Passiflora cincinnata and P. edulis flavicarpa (2007) Acta Hortic, 738, pp. 425-431Shaik, S., Singh, N., Nicholas, A., HPLC and GC analyses of in vitro-grown leaves of the cancer bush Lessertia (Sutherlandia) frutescens L. reveal higher yields of bioreactive compounds (2011) Plant Cell Tiss Organ Cult, 105, pp. 431-438Silva, M.L., Pinto, D.L.P., Guerra, M.P., Floh, E.I.S., Bruckner, C.H., Otoni, W.C., A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from mature zygotic embryos (2009) Plant Cell Tiss Organ Cult, 99, pp. 47-54Singh, S., Kuanar, A., Mohanty, S., Subudhi, E., Nayak, S., Evaluation of phytomedicinal yield potential and molecular profiling of micropropagated and conventionally grown turmeric (Curcuma longa L.) (2011) Plant Cell Tiss Organ Cult, 104, pp. 263-269Socorro, O., Tárrega, I., Rivas, F., Essential oils from wild and micropropagated plants of Origanum bastetanum (1998) Phytochemistry, 48, pp. 1347-1349Stancheva, N., Weber, J., Schulze, J., Alipieva, K., Ludwig-Müller, J., Phytochemical and flow cytometric analyses of Devil′s claw cell cultures (2011) Plant Cell Tiss Organ Cult, 105, pp. 79-84Su, Y.H., Zhang, X.S., Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis (2009) Plant Signal Behav, 4, pp. 574-576Traw, M.B., Dawson, T.E., Differential induction of trichomes by three herbivores of black mustard (2002) Oecologia, 131, pp. 526-532Ulmer, T., Macdougal, J.M., (2004) Passiflora, Passion Flowers of the World, , Cambridge: Timber PressWagner, G.J., Secreting glandular trichomes: more than just hairs (1991) Plant Physiol, 96, pp. 675-679Yang, R.H., Shetty, K., Stimulation of rosmarinic acid in shoot cultures of oregano (Origanum vulgare) clonal line in response to proline, proline analogue, and proline precursors (1998) J Agric Food Chem, 46, pp. 2888-289

    Species-dependent Divergent Responses To In Vitro Somatic Embryo Induction In Passiflora Spp.

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Passiflora is a large and widespread genus of tropical plants that includes over 500 species. Organogenesis-based in vitro plant regeneration systems have long been available for the commercially important species Passiflora edulis, the passionfruit, and for a few other related wild species. Recently, somatic embryogenesis from mature zygotic embryos was reported for passionfruit and for a related wild species, P. cincinnata, although the recovery of entire plants was obtained only for the latter. Here we assessed the in vitro morphogenic responses of zygotic embryos of five different Passiflora species (P. alata Curtis, P. crenata Feuillet & Cremers, P. edulis Sims, P. foetida L. and P. gibertii N.E. Brown) cultured in basal Murashige and Skoog (MS) medium supplemented with 4.5 μM 6-benzyladenine (BA) and different concentrations (13.6, 18.1, 22.6 or 27.1 μM) of 2,4-dichlorophenoxyacetic acid (2,4-D). We characterized these different responses using light and scanning electron microscopy. Somatic embryos were obtained in MS medium supplemented with 4.5 μM BA and either 13.6 or 18.1 μM 2,4-D for all species, except P. foetida for which only indirect shoot organogenesis was observed. Regeneration of entire plants that could be acclimatized was achieved for all species studied. Additionally, our results indicated that the in vitro conditions that promote somatic embryogenesis in some Passiflora species might induce shoot organogenesis in others, suggesting that the conservation of morphogenetic signals among Passiflora species might be limited by their phylogenetic relatedness.12016977CAPES; Conselho Nacional de Desenvolvimento Científico e Tecnológico; CNPq; Conselho Nacional de Desenvolvimento Científico e Tecnológico; FAPESP; Conselho Nacional de Desenvolvimento Científico e TecnológicoFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Ahmadi, B., Shariatpanahi, M.E., da Silva, J.A.T., Efficient induction of microspore embryogenesis using abscisic acid, jasmonic acid and salicylic acid in Brassica napus L (2014) Plant Cell Tiss Organ Cult, 116, pp. 343-351. , COI: 1:CAS:528:DC%2BC3sXhvFGitr7NBecerra, D.C., Forero, A.P., Góngora, G.A., Age and physiological condition of donor plants affect in vitro morphogenesis in leaf explants of Passiflora edulis f. flavicarpa (2004) Plant Cell Tissue Organ Cult, 79, pp. 87-90Braglia, L., De Benedetti, L., Giovannini, A., Nicoletti, F., Bianchini, C., Pepino, L., Mercuri, A., In vitro plant regeneration as a tool to improve ornamental characters in Passiflora species (2010) Acta Hortic, 855, pp. 47-52Dodsworth, S., A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem (2009) Dev Biol, 336, pp. 1-9. , COI: 1:CAS:528:DC%2BD1MXhtlyrsbfJ, PID: 19782675Dornelas, M.C., Vieira, M.L.C., Plant regeneration from protoplast cultures of Passiflora edulis var. flavicarpa Deg. and P. cincinnata Mast (1993) Plant Cell Rep, 13, pp. 103-106. , COI: 1:CAS:528:DyaK2cXltVChtr4%3D, PID: 24196297Dornelas, M.C., Vieira, M.L.C., Tissue culture on species of Passiflora (1994) Plant Cell Tissue Organ Cult, 36, pp. 211-217. , COI: 1:CAS:528:DyaK2cXkslynurs%3DDornelas, M.C., Vieira, M.L.C., Appezzato-da-Gloria, B., Histological analysis of organogenesis and somatic embryogenesis induced in immature tissues of Stylosanthes scabra (1992) Ann Bot, 70, pp. 477-482. , COI: 1:CAS:528:DyaK3sXhsVelsrk%3DDornelas, M.C., Fonseca, T.C., Rodriguez, A.P.M., Brazilian passionflowers and novel passionate tropical flowering gems (2006) Floriculture ornamental and plant biotechnology, pp. 629-639. , Silva JAT, (ed), 4, Global Science Books, London:Dubas, I.Z.E., Krzewska, M., Sánchez-Díaz, R.A., Castillo, A.M., Vallés, M.P., Changes in gene expression patterns associated with microspore embryogenesis in hexaployd triticale (xTriticosecale Wittm.) (2014) Plant Cell Tissue Organ Cult, 116, pp. 261-267Echeverri, F., Arango, V., Quiñones, W., Torres, F., Escobar, G., Rosero, Y., Archbold, R., Passifloricins, polyketides alpha-pyrones from Passiflora foetida (2001) Phytochemistry, 56, pp. 881-885. , COI: 1:CAS:528:DC%2BD3MXisVWjsLc%3D, PID: 11324922Elhiti, M., Stasolla, C., The use of zygotic embryos as explants for in vitro propagation: an overview (2011) Methods Mol Biol, 710, pp. 229-255. , COI: 1:CAS:528:DC%2BC3MXmtFagu7c%3D, PID: 21207273Feuillet, C.P.G.-A., Cremers, G.A., Passiflora crenata (1984) Proc Kon Ned Akad Wetensch C, 87, p. 378Gamborg, O.L., Miller, R.A., Ojima, K., Nutrient requirements of suspension cultures of soybean root cells (1968) Exp Cell Res, 50, pp. 151-158. , COI: 1:CAS:528:DyaF1cXktVyqtLw%3D, PID: 5650857Garcia, R., Pacheco, G., Falcão, E., Borges, G., Mansur, E., Influence of type of explants, plant growth regulators, salt composition of basal medium, and light on callogenesis and regeneration in Passiflora suberosa L. (Passifloraceae) (2011) Plant Cell Tissue Organ Cult, 106, pp. 47-54. , COI: 1:CAS:528:DC%2BC3MXmvFWnsrs%3DGordon, S.P., Heisler, M.G., Reddy, G.V., Ohno, C., Das, P., Meyerowitz, E.M., Pattern formation during de novo assembly of the Arabidopsis shoot meristem (2007) Development, 134, pp. 3539-3548. , COI: 1:CAS:528:DC%2BD2sXhtlSitbfE, PID: 17827180Guzzo, F., Ceoldo, S., Andreetta, F., Levi, M., In vitro culture from mature seeds of Passiflora species (2004) Sci Agric, 61, pp. 108-113. , COI: 1:CAS:528:DC%2BD2cXisFKjsrc%3DHamant, O., Traas, J., Boudaoud, A., Regulation of shape and patterning in plant development (2010) Curr Opin Genet Dev, 20, pp. 454-459. , COI: 1:CAS:528:DC%2BC3cXptVCrsr0%3D, PID: 20478701Heringer, A.S., Steinmacher, D.A., Fraga, H.P.F., Vieira, L.N., Ree, J.F., Guerra, M.P., Global DNA methylation profiles of somatic embryos of peach palm (Bactris gasipaes Kunth) are influenced by cryoprotectants and droplet-vitrification cryopreservation (2013) Plant Cell Tissue Organ Cult, 114, pp. 365-372. , COI: 1:CAS:528:DC%2BC3sXhtlSnurzEJiménez, V.M., Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis (2005) J Plant Growth Regul, 47, pp. 91-110Li, W.-F., Zhang, S.-G., Han, S.-Y., Wu, T., Zhang, J.-H., Qi, L.-W., Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr (2013) Plant Cell Tissue Organ Cult, 113, pp. 131-136. , COI: 1:CAS:528:DC%2BC3sXkvF2hs7s%3DMohamed, M.E., Hicks, R.G.T., Blakesley, D., Shoot regeneration from mature endosperm of Passiflora foetida (1996) Plant Cell Tissue Organ Cult, 46, pp. 161-164. , COI: 1:CAS:528:DyaK2sXnvFGktQ%3D%3DMurashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures (1962) Physiol Plant, 15, pp. 473-497. , COI: 1:CAS:528:DyaF3sXksFKmMuschner, V.C., Lorenz, A.P., Cervi, A.C., Bonatto, S.L., Souza-Chies, T.T., Salzano, F.M., Freitas, L.B., A first molecular phylogenetic analysis of Passiflora (Passifloraceae) (2003) Am J Bot, 90, pp. 1229-1238. , COI: 1:CAS:528:DC%2BD3sXntlKit7c%3D, PID: 21659223O’Brien, T.P., McCully, M.E., (1981) The study of plant structure principles and selected methods, , Termarcarphi, Melbourne:Oliveira, J.C., Ruggiero, C., Passionfruit species with agronomic potential (2005) Passionfruit: germplasm and breeding, pp. 143-158. , Faleiro FG, Junqueira NTV, Braga MF, (eds), Embrapa Cerrados, Planaltina: (in Portuguese)Paim-Pinto, D.L.P., Barros, B.A., Viccini, L.F., Campos, J.M.F., Silva, M.L., Otoni, W.C., Ploidy stability of somatic embryogenesis-derived Passiflora cininnata Mast. Plants as assessed by flow cytometry (2010) Plant Cell Tissue Organ Cult, 103, pp. 71-79Paim-Pinto, D.L.P., de Almeida, A.M.R., Rêgo, M.M., Silva, M.L., Oliveira, E.J., Otoni, W.C., Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (Passiflora edulis Sims) genotypes (2011) Plant Cell Tissue Organ Cult, 107, pp. 521-530Pavlović, S., Vinterhalter, B., Zdravković-Korać, S., Vinterhalter, D., Zdravković, J., Cvikć, D., Mitić, N., Recurrent somatic embryogenesis and plant regeneration from immature zygotic embryos of cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis) (2013) Plant Cell Tissue Organ Cult, 113, pp. 397-406Petrásek, J., Friml, J., Auxin transport routes in plant development (2009) Development, 136, pp. 2675-2688. , PID: 19633168Pinto, A.P., Monteiro-Hara, A.C.B.A., Stipp, L.C.L., Mendes, B.M.J., In vitro organogenesis of Passiflora alata (2010) In Vitro Cell Dev Biol Plant, 46, pp. 28-33Pipino, L., Braglia, L., Giovannini, A., Fascella, G., Mercuri, A., In vitro regeneration of Passiflora species with ornamental value (2008) Propag Ornam Plants, 8, pp. 47-49Puricelli, L., Dell´Aica, I., Sartor, L., Garbisa, S., Caniato, R., Preliminary evaluation of inhibition of matrix-metalloproteins MMP-2 and MMP-9 by Passiflora edulis and P. foetida aqueous extracts (2003) Fitoterapia, 74, pp. 302-304. , COI: 1:STN:280:DC%2BD3s3gs1eltw%3D%3D, PID: 12727500Radhamani, T.R., Sudarshana, L., Krishnan, R., Defense and carnivory: dual role of bracts in Passiflora foetida (1995) J Biosci, 20, pp. 657-664Rai, M.J.K., Shekhawat, N.S., Recent advances in genetic engineering for improvement of fruit crops (2014) Plant Cell Tissue Organ Cult, 116, pp. 1-15. , COI: 1:CAS:528:DC%2BC3sXhs1SnsLvKRocha, D.I., Vieira, L.M., Tanaka, F.A.O., Silva, L.C., Otoni, W.C., Anatomical and ultrastructural analyses of in vitro organogenesis from root explants of commercial passion fruit (Passiflora edulis Sims) (2012) Plant Cell Tissue Organ Cult, 111, pp. 69-78. , COI: 1:CAS:528:DC%2BC38XhtlWls7vLRosa, Y.B.C.J., Dornelas, M.C., In vitro plant regeneration and de novo differentiation of secretory trichomes in Passiflora foetida L. (Passifloraceae) (2012) Plant Cell Tissue Organ Cult, 108, pp. 91-99. , COI: 1:CAS:528:DC%2BC3MXhsFamsr7MSilva, M.L., Pinto, D.L.P., Guerra, M.P., Floh, E.I.S., Bruckner, C.H., Otoni, W.C., A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from mature zygotic embryos (2009) Plant Cell Tissue Organ Cult, 99, pp. 47-54Souza, M.M., Pereira, T.N.S., Vieira, M.L.C., Cytogenetic studies in some species of Passiflora L. (Passifloraceae): a review emphasizing Brazilian species (2008) Braz Arch Biol Technol, 51, pp. 247-258. , COI: 1:CAS:528:DC%2BD1cXosl2rsbo%3DSu, Y.H., Zhang, X.S., Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis (2009) Plant Signal Behav, 4, pp. 574-576. , COI: 1:CAS:528:DC%2BD1MXhsFGmsbjK, PID: 19820347Talapatra, S., Ghoshal, N., Raychaudhury, S.S., Molecular characterization, modeling and expression analysis of a somatic embryogenesis receptor kinase (SERK) gene in Momordica charantia L. during somatic embryogenesis (2014) Plant Cell Tissue Organ Cult, 116, pp. 271-283. , COI: 1:CAS:528:DC%2BC3sXhslOjsrzJVieira, M.L.C., Carneiro, M.S., Passiflora spp, passionfruit (2004) Biotechnology of fruit and nut crops, pp. 435-453. , Litz RE, (ed), CABI, Wallingford:von Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J., Filonova, L., Developmental pathways of somatic embryogenesis (2002) Plant Cell Tissue Organ Cult, 69, pp. 233-249Xu, L., Huang, H., Genetic and epigenetic controls of plant regeneration (2014) Curr Top Dev Biol, 108, pp. 1-33. , PID: 24512704Zerbini, F.M., Otoni, W.C., Oliveira, M.L.C., Passionfruit (2008) A compendium of transgenic crop plants—tropical and subtropical fruit and nuts, pp. 213-234. , Kole C, Hall TC, (eds), 5, Wiley, Berlin:Zhang, J.-H., Zhang, S.-G., Li, S.-G., Han, S.-Y., Li, W.-F., Li, X.-M., Qi, L.-W., Regulation of synchronism by abscisic-acid-responsive small non-coding RNAs during somatic embryogenesis in larch (Larix leptolepis) (2014) Plant Cell Tissue Organ Cult, 116, pp. 361-370. , COI: 1:CAS:528:DC%2BC3sXhvVyhs7n

    Aspects Of The Reproductive Biology Of Brassavola Cebolleta Rchb.f. (orchidaceae) [aspectos Da Biologia Reprodutiva De Brassavola Cebolleta Rchb. F. (orchidaceae)]

    No full text
    This survey assessed some aspects of the reproductive biology of Brassavola cebolleta Rchb. f. (Orchidaceae) in the Municipality of Dourados, Mato Grosso do Sul State, Brazil. Floral biology, breeding systems, floral visitors and seed germination were analyzed. Differential success and fruit production rate were calculated. Pollination system indicated the pollen vector dependence and absence of pre-zygotic barriers related to selfincompatibility. Pollination occurred at night, being the potential pollen vector a Lepidoptera-Notodontidae of the genus Hemiceras. Differential success of male was 19%, female 9%, and the rate of effective fructification was 6.3%. Fruits produced after pollinator visits were larger than those generated by manual cross pollination, and despite the lower number of potentially viable seeds produced by the first, they presented a higher germination rate in asymbiotic media. This study warns to the vulnerability of the studied species, since the habitat fragmentation associated with pollinator scarcity and seed predation may significantly decrease new recruitment into populations.324335341Ackerman, J.D., Oliver, J.C., Reproductive biology of Oncidium variegatum: Moon phases, pollination, and fruit set (1985) American Orchid Society Bulletin, 54 (3), pp. 326-329Aguilar, R., Ashworth, L., Galetto, L., Aizen, M.A., Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis (2006) Ecology Letters, 9 (8), pp. 968-980Bondar, G., Notas entomológicas da Bahia. XX (1948) Revista De Entomologia, 19 (1-2), pp. 1-54Braga, P.I.S., Aspectos biológicos das Orchidaceae de uma campina da Amazônia Central (1977) Acta Amazonica, 7 (2), pp. 1-89Campos, D.M., (2002) Orquídeas: Micropropagação E Quimioterapia De Meristemas, , Rio de Janeiro: Expressão e CulturaCarvalho, R., Machado, I.C., Rodriguezia bahiensis Rchb. f.: Biologia floral, polinizadores e primeiro registro de polinização por moscas Acroceridae em Orchidaceae (2006) Revista Brasileira De Botânica, 29 (3), pp. 461-470van der Cingel, N.A., (2001) An Atlas of Orchid Pollination, America, Africa, Asia and Australia, , Bloomington: CRC PressCozzolino, S., Widmer, A., The evolutionary basis of reproductive isolation in Mediterranean orchids (2005) Taxon, 54 (4), pp. 977-985Dafni, A., (1992) Pollination ecology: A practical approach, , New York: Oxford University PressDamon, A., Salas-Roblero, P., A survey of pollination in remnant orchid populations in Soconusco, Chiapas, Mexico (2007) Tropical Ecology, 48 (1), pp. 1-14Donaldson, J., Nanni, I., Zachariades, C., Kemper, J., Effects of habitat fragmentation on pollinator activity and plant reproductive success in renosterveld shrublands of South Africa (2002) Conservation Biology, 16 (5), pp. 1267-1276Duffy, K.J., Scopece, G., Cozzolino, S., Fay, M.F., Smith, R.J., Stout, J.C., Ecology and genetic diversity of the dense-flowered orchid, Neotinea maculata, at the centre and edge of its range (2008) Annals of Botany, 102 (10), pp. 1093-1200Garcia-Cruz, J., Sosa, V., Fruit production and floral traits: Correlated evolution in Govenia (Orchidaceae) (2008) Evolutionary Ecology, 22 (6), pp. 801-815Gregg, K.B., Defrauding the deceitful orchid: Pollen collection by pollinators of Cleistes divaricata and C. bifaria (1991) Lindleyana, 6 (1), pp. 214-220Humana, A.M., Cisternas, M.A., Valdivia, C.E., Breeding system and pollination of selected orchids of the genus Chlorea (Orchidaceae) from central Chile (2008) Flora, 203 (6), pp. 469-473Johnson, S.D., Morita, S., Lying to Pinocchio: Floral deception in an orchid pollinated by long-proboscid flies (2006) Botanical Journal of Linnean Society, 152 (3), pp. 271-278Kerbauy, G.B., (2004) Fisiologia Vegetal, , Rio de Janeiro: Guanabara KooganKevan, P.G., Imperatriz-Fonseca, V., (2006) Pollinating bees: The conservation link between agriculture and nature, , Brasilia: Ministério do Meio AmbienteLakon, G., The topographical tetrazolium method for determining the germination capacity of seeds (1949) Plant Physiology, 24 (3), pp. 389-394Mickeliunas, L., Pansarin, E.R., Sazima, M., Biologia floral, melitofilia e influência de besouros Curculionidae no sucesso reprodutivo de Grobya amherstiae Lindl. (Orchidaceae: Cyrtopodiinae) (2006) Revista brasileira de botânica, 29 (2), pp. 251-258Newstrom, L.F., Frankie, G.W., Baker, H.G., A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica (1994) Biotropica, 26 (1), pp. 141-159Otero, J.T., Flanagan, N.S., Orchid diversity -beyond deception (2006) Trends In Ecology and Evolution, 21 (2), pp. 64-65Pansarin, E.R., Biologia reprodutiva e polinização em Epidendrum paniculatum Ruiz e Pavon (Orchidaceae) (2003) Revista Brasileira De Botânica, 26 (2), pp. 203-211Pansarin, E.R., Reproductive biology and pollination of Govenia utriculata: A syrphid fly orchid pollinated through a pollen deceptive mechanism (2008) Plant Species Biology, 23 (2), pp. 90-96Pansarin, E.R., Amaral, M.C.E., Reproductive biology and pollination os southeastern brasilian Stanhopea Frost. Ex Hook (Orchidaceae) (2009) Flora, 204 (3), pp. 238-249Parra-Tabla, V., Vargas, C.F., Flowering synchrony and floral display size affect pollination success in a deceitpollinated tropical orchid (2007) Acta Oecologica, 32 (1), pp. 26-35Parra-Tabla, V., Female and male pollination success of Oncidium ascendens Lindey (Orchidaceae) in two contrasting habitat patches: Forest vs agricultural field (2000) Biological Conservation, 94 (1), pp. 335-340Pellegrino, D., Gargano, D., Noce, E.M.M., Reproductive biology and pollinator limitation in deceptive orchid, Serapias vomeracea (Orchidaceae) (2005) Plant Species Biology, 20 (1), pp. 33-39Peter, C.I., Johnson, S.D., Anther cap retention prevents self-pollination by elaterid beetles in the South African orchid Eulophia foliosa (2006) Annals of Botany, 97 (3), pp. 345-355Pritchard, K.D., Edwards, W., Supplementary pollination in the production of custard apple (Annona sp.), the effect of pollen source (2006) Journal of Horticultural Science and Biotechnology, 81 (1), pp. 78-83Rech, A.R., Rosa, Y.B.C.J., Rosa-Junior, E.J., Primeira ocorrência de fitofagia de frutos e sementes de Orchidaceae por Hyphilaria thasus Stoll. (Lepidoptera: Riodinidae) no Brasil (2008) Revista brasileira de horticultura ornamental, 29 (3), pp. 320-325Roebuck, K.I., Steinhart, W.L., Pollination ecology and the nocturnal scent response in the genus Brassavola (1978) AOS-Bulletin, 47 (6), pp. 507-511Schemske, D.W., Evolution of floral display in the orchid Brassavola nodosa (1980) Evolution, 34 (3), pp. 489-493Schiestl, F.P., Schlüter, P.M., Floral isolation, specialized pollination, and pollinator behavior in orchids (2009) Annual Review of Entomology, 54 (1), pp. 425-446Scogin, R., Young, D.A., Jones, C.E., Anthochlor pigments and pollination biology: II. The ultraviolet patterns of Coreopsis gigantea (Asteracea) (1977) Bulletin of the Torrey Botanical Club, 104 (2), pp. 155-159Shi, J., Luo, Y.B., Bernhardt, P., Ran, J.C., Liu, Z.J., Zhan, Q., Pollination by deceit in Paphiopedilum barbigerum (Orchidaceae): A staminode exploits the innate colour preferences of hoverflies (Syrphidae) (2009) Plant Biology, 11 (1), pp. 17-28Singer, R.B., Sazima, M., The pollination mechanism in the "Pelexia alliance" (Orchidaceae: Spiranthinae) (1999) Botanical Journal of the Linnean Society, 131 (3), pp. 249-262Taiz, L., Zeiger, E., (2004) Fisiologia Vegetal, , Porto Alegre: ArtmedTremblay, R.L., Ackerman, J.D., Zimmerman, J.K., Calvo, R.N., Variation in sexual reproduction in orchids and its evolutionary consequences: A spasmodic journey to diversification (2005) Biological Journal of the Linnean Society, 84 (1), pp. 1-54Vieira, M.F., Andrade, M.R.S., Bittencourt, N.S., Carvalho-Okano, R.M., Flowering phenology, nectary structure and breeding system in Corymborkis flava (Spiranthoideae: Tropididae), a terrestrial orchid from a Neotropical Forest (2007) Australian Journal of Botany, 55 (6), pp. 635-642Wang, C.Q., Luo, Y.B., Tai, Y.D., An, D.J., Kou, Y., Ants pollinate Neottia listerioides (Orchidaceae) in Sichuan, China (2008) Journal of Systematics and Evolution, 46 (6), pp. 836-846Waser, N.M., Ollerton, J., (2006) Plant-pollinator Interactions: From Specialization to Generalization, , Chicago: The University of Chicago PressWiemer, A.P., Moré, M., Benitez-Vieyra, S., Cocucci, A.A., Raguso, R.A., Sersic, A.N., A simple floral fragrance and unusual osmophore structure in Cyclopogon elatus (Orchidaceae) (2009) Plant Biology, 11 (4), pp. 506-514Yu, X.H., Luo, Y.B., Dong, M., Pollination biology of Cymbidium goeringii (Orchidaceae) in China (2008) Journal of Systematics and Evolution, 46 (2), pp. 163-17

    Pmtcp1 Encodes A Putative Tcp Transcription Factor And Is Differentially Expressed During In Vitro Organogenesis In Passiflora

    No full text
    The genus Passiflora includes economically important passion fruits and over 600 other wild species. Micropropagation of Passiflora species is far from routine due to low regeneration frequencies and multiplication rates, so there is great interest in understanding the molecular control of the in vitro regeneration processes of these species. Here, we report the characterization of a Passiflora morifolia gene encoding PmTCP1, a putative TCP transcription factor that showed high sequence similarity to Arabidopsis class I TCPs. The expression patterns of the PmTCP1 gene during in vitro organogenesis and callus growth revealed differential expression of PmTCP1 modulated by different combinations of auxin and cytokinin concentrations in the culture medium. At a constant auxin concentration, cytokinin increased PmTCP1 expression, and at a constant cytokinin concentration, auxin repressed PmTCP1 expression. We also observed a correlation between PmTCP1 expression and the in vitro organogenesis of roots and shoots. We expect that these results will increase our understanding of the molecular networks and environmental signals that modulate the processes of organogenesis during plant development. © 2013 The Society for In Vitro Biology.5013644Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs (1997) Nucleic Acids Res., 25, pp. 3389-3402Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., Duvaud, S., Stockinger, H., ExPASy: SIB bioinformatics resource portal (2012) Nucleic Acids Res., 40 (W1), pp. W597-W603Cubas, P., Lauter, N., Doebley, J., Coen, E., The TCP domain: a motif found in proteins regulating plant growth and development (1999) Plant J., 18, pp. 215-222Cutri, L., Dornelas, M.C., PASSIOMA: Exploring expressed sequence tags during flower development in Passiflora spp (2012) Comp Funct Genomics, 2012, p. 510549Danisman, S., van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A., van Dijk, A.D.J., Immink, R.G.H., Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically (2012) Plant Physiol., 159, pp. 1511-1523Doebley, J., Stec, A., Hubbard, L., The evolution of apical dominance in maize (1997) Nature, 386, pp. 485-488Dornelas, M.C., Fonseca, T.C., Rodriguez, A.P.M., Brazilian passionflowers and novel passionate tropical flowering gems (2006) Floriculture, Ornamental and Plant Biotechnology, 4, pp. 629-639. , J. A. T. Silvada (Ed.), London: Global Science BooksDornelas, M.C., Patreze, C.M., Angenent, G.C., Immink, R.G.H., MADS: the missing link between identity and growth? (2011) Trends Plant Sci., 16, pp. 89-97Dornelas, M.C., Tsai, S.M., Rodriguez, A.P.M., Expressed sequence tags of genes involved in the flowering process of Passiflora spp (2006) Floriculture, Ornamental and Plant Biotechnology, 1, pp. 483-488. , J. A. T. Silvada (Ed.), London: Global Science BooksDornelas, M.C., van Lammeren, A.A., Kreis, M., Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development (2000) Plant J., 21, pp. 419-429Dornelas, M.C., Vieira, M.L.C., Tissue culture of species of Passiflora (1994) Plant Cell Tissue Organ Cult., 36, pp. 211-217Efroni, I., Blum, E., Goldshmidt, A., Eshed, Y., A protracted and dynamic maturation schedule underlies Arabidopsis leaf development (2008) Plant Cell, 20, pp. 2293-2306Efroni, I., Han, S.K., Kim, H.J., Wu, M.F., Steiner, E., Birnbaum, K.D., Hong, J.C., Wagner, D., Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses (2013) Dev. Cell, 24, pp. 438-445Finn, R.D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J.E., Gavin, O.L., Bateman, A., The Pfam protein families database (2010) Nucleic Acids Res., 38, pp. D211-D222Hervé, C., Dabos, P., Bardet, C., Jauneau, A., Auriac, M.C., Ramboer, A., Lacout, F., Tremousaygue, D., In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development (2009) Plant Physiol., 149, pp. 1462-1477Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., Nakai, K., WoLF PSORT: protein localization predictor (2007) Nucleic Acids Res., 35, pp. W585-W587Howart, D.G., Donoghue, M.J., Phylogenetic analysis of the 'ECE' (CYC/TB1) clade reveals duplications predating the core eudicots (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 9101-9106Huang, X., Madan, A., CAP3: A DNA sequence assembly program (1999) Genome Res., 9, pp. 868-877Kosugi, S., Ohashi, Y., PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene (1997) Plant Cell, 9, pp. 1607-1619Koyama, T., Mitsuda, N., Seki, M., Shinozaki, K., Ohme-Takagi, M., TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis (2010) Plant Cell, 22, pp. 3574-3588Luo, D., Carpenter, R., Vincent, C., Copsey, L., Coen, E., Origin of floral asymmetry in Antirrhinum (1996) Nature, 383, pp. 794-799Manassero, N.G.U., Viola, I.L., Welchen, E., Gonzalez, D.H., TCP transcription factors: architectures of plant form (2013) BioMol Concepts, 4, pp. 111-127Martín-Trillo, M., Cubas, P., TCP genes: a family snapshot ten years later (2009) Trends Plant Sci., 15, pp. 31-39Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures (1962) Physiol. Plant., 15, pp. 473-497Navaud, O., Dabos, P., Carnus, E., Tremousaygue, D., Hervé, C., TCP transcription factors predate the emergence of land plants (2007) J. Mol. Evol., 65, pp. 23-33Page, R.D.M., Treeview: An application to display phylogenetic trees on personal computers (1996) Comp Appl Biosci, 12, pp. 357-358Saitou, N., Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees (1987) Mol. Biol. Evol., 4, pp. 406-425Sarojam, R., Sappl, P.G., Goldshmidt, A., Efroni, I., Floyd, S.K., Eshed, Y., Bowman, J.L., Differentiating Arabidopsis shoots from leaves by combined YABBY activities (2010) Plant Cell, 22, pp. 2113-2130Sarvepalli, K., Nath, U., Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation (2011) Plant J., 67, pp. 595-607Sarvepalli, K., Nath, U., Interaction of TCP4-mediated growth module with phytohormones (2011) Plant Signal. Behav., 6, pp. 1143-1440Schommer, C., Palatnik, J.F., Aggarwal, P., Chételat, A., Cubas, P., Farmer, E.E., Nath, U., Weigel, D., Control of jasmonate biosynthesis and senescence by miR319 targets (2008) PLoS Biol., 6, pp. e230Silva, M.L., Pinto, D.L.P., Guerra, M.P., Floh, E.I.S., Bruckner, C.H., Otoni, W.C., A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from mature zygotic embryos (2009) Plant Cell Tissue Organ Cult., 99, pp. 47-54Steiner, E., Efroni, I., Gopalraj, M., Saathoff, K., Tseng, T.S., Kieffer, M., Eshed, Y., Weiss, D., The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers (2012) Plant Cell, 24, pp. 96-108Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol. Biol. Evol., 28, pp. 2731-2739Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res., 22, pp. 4673-4680Uberti-Manassero, N.G., Lucero, L.E., Viola, I.L., Vegetti, A.C., Gonzalez, D.H., The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins (2011) J. Exp. Bot., 63, pp. 809-823Vieira, M.L.C., Carneiro, M.S., Passiflora spp., passionfruit (2004) Biotechnology of Fruit and Nut Crops, pp. 435-453. , R. E. Litz (Ed.), Oxford: CABI PublishingZerbini, F.M., Otoni, W.C., Vieira, M.L.C., Passionfruit (2008) A Compendium of Transgenic Crop Plants - Tropical and Subtropical Fruit and Nuts, 5, pp. 213-234. , 1st edn., C. Kole and T. C. Hall (Eds.), Berlin: Wile

    Germinação assimbiótica e desenvolvimento de Dendrobium nobile Lindl. sob efeito de reguladores vegetais no tratamento pré-germinativo Asymbiotic germination and development of Dendrobium nobile Lindl. under the effect of plant growth regulators in pre-germinative treatment

    No full text
    O presente trabalho teve como objetivo estudar a influência dos reguladores vegetais BAP e GA3 como tratamentos pré-germinativos no processo de germinação e desenvolvimento inicial de plântulas de Dendrobium nobile, espécie importante pelas propriedades farmacológicas como anti-oxidante, vasodilatadora e até mesmo anti-cancerígena, além do valor ornamental. Os tratamentos pré-germinativos consistiram de BAP e GA3, separadamente, nas concentrações de 0,0; 1,0; 2,0 e 5,0 mg L-1. Após seis meses da semeadura in vitro e manutenção em câmara de germinação e de crescimento com temperatura e foto-período controlados (12 horas e 23ºC ± 2), foram avaliados os parâmetros número de sementes germinadas, porcentagem de germinação, massa fresca e altura das plântulas, diâmetro e número de pseudobulbos, número de folhas, número de raízes, e o comprimento da maior raiz. O delineamento experimental foi inteiramente casualizado. Todas as variáveis foram submetidas à análise de variância e de regressão, quando significativas. As sementes de D. nobile germinaram melhor na ausência de reguladores vegetais e os tratamentos com BAP ou GA3 na embebição das sementes pouco beneficiaram o desenvolvimento in vitro de D. nobile.The present study aimed to investigate the influence of plant growth regulators BAP and GA3 as pre-germinative treatment in the process of germination and initial development of seedlings of Dendrobium nobile, a species important for its pharmacological properties like antioxidant, vasodilator and even anticancer, besides its ornamental value. Pre-germinative treatments consisted of BAP and GA3, separately, at the concentrations of 0.0; 1.0; 2.0 and 5.0 mg L-1. At six months after in vitro sowing and maintenance in a germination and growth chamber with controlled temperature and photoperiod (12 hours and 23ºC ± 2), the following parameters were evaluated: number of germinated seeds, percentage of germination, fresh mass and height of seedlings, number and diameter of pseudo-bulbs, number of leaves, number of roots, and length of the largest root. The experimental design was completely randomized. All variables underwent analysis of variance and regression analysis when significant. D. nobile seeds presented better germination in the absence of plant growth regulators and the treatments with BAP or GA3 in seed imbibition little benefited D. nobile in vitro development

    Espaçamentos entre plantas e cobertura do solo com cama-de-frango na produção da bardana (Arctium lappa L.)

    No full text
    O objetivo do trabalho foi estudar o crescimento, o desenvolvimento e a produção da bardana em resposta a cinco espaçamentos entre plantas (40,0; 47,5; 55,0; 62,5 e 70,0 cm) e ao uso (CCF) ou não (SCF) de cobertura de solo com cama-de-frango semidecomposta. Os dez tratamentos foram arranjados como fatorial 5x2, no delineamento experimental blocos casualizados, com quatro repetições. As plantas foram propagadas inicialmente em berços de isopor e, posteriormente, em canteiros, arranjadas em fileiras duplas, espaçadas de 0,50 m entre fileiras simples e 1,0 m entre fileiras duplas. As avaliações de altura foram feitas a partir de 30 dias até 180 dias quando foi feita a colheita. As médias de altura (172 cm) e área foliar (20.704 cm-2) das plantas e as médias de comprimento (23,6 cm) e diâmetro das raízes (16,2 mm) não foram influenciadas significativamente pelos espaçamentos nem pela cobertura ou não do solo. Os maiores e menores valores para massas fresca (25.676 kg ha-1 e 15.217 kg ha-1) e seca (1.941,02 kg ha-1 e 1.104,61 kg ha-1) de folhas, para o número de raízes (490.750 ha-1 e 272.120 ha-1) e para as massas fresca (5.080,35 kg ha-1 e 3.546,25 kg ha-1) e seca (1.448,91 kg ha-1 e 1.051,31 kg ha-1) de raízes foram encontrados com os espaçamentos de 40,0 cm e de 70,0 cm entre plantas, respectivamente, mostrando decréscimo linear na medida em que aumentaram os espaçamentos. Os teores de nitrogênio (N) e de fósforo (P), respectivamente, nas massas secas de folhas (12,84 g kg-1 e 0,33 g kg-1) e de raízes (4,11 g kg-1 e 0,13 g kg-1) de bardana não foram influenciados significativamente pelos espaçamentos, mas sim pela cobertura ou não do solo com cama-de-frango

    Desenvolvimento de mudas de manjericão (Ocimum basilicum L.)em função do recipiente e do tipo e densidade de substratos

    No full text
    Uma das etapas mais importantes na produção do manjericão é o desenvolvimento das mudas. Nesta etapa, o cuidado com o recipiente e o substrato é essencial, pois afetam diretamente o crescimento e a arquitetura do sistema radicular, bem como, o fornecimento de nutrientes. Assim, o objetivo deste trabalho foi avaliar o desenvolvimento de mudas de manjericão (Ocimum basilicum L.) influenciadas pelo tipo e densidade de diferentes substratos, cultivadas em bandejas de poliestireno com diferentes números de células. O experimento foi conduzido na área de Jardinocultura da Universidade Federal da Grande Dourados (UFGD) em Dourados - MS. O delineamento experimental utilizado foi em blocos casualizados com cinco repetições, sendo os tratamentos dispostos em esquema fatorial 3x3x5, sendo três tipos de bandejas de poliestireno expandido com 72, 128 e 200 células com volumes internos de 124,3; 44,8 e 17,7 mL, respectivamente. Três tipos de substratos comerciais (PlantMax Florestais®; Tropstrato Vida Verde® e PlantMax Hortaliças HA®), e cinco densidades de substratos (0,36; 0,42; 0,48; 0,54 e 0,60 kg dm-3). Decorridos 78 dias após a emergência das plantas avaliou-se alturas das plantas, massa fresca e seca da parte aérea e sistema radicular, e comprimento de raízes. A produção de mudas comerciais de manjericão (Ocimum basilicum L.) foi melhor com o uso do substrato Tropstrato Vida Verde® na bandeja de 72 células associado com a densidade de 0,47 kg dm-3

    Análise de coberturas com telhas de barro e alumínio, utilizadas em instalações animais para duas distintas alturas de pé-direito The analysis of ceramic tile and aluminum covers, used in animal facilities for two different foot-right heights

    No full text
    Este trabalho teve como objetivo a análise de coberturas com telhas de barro e alumínio, comumente utilizadas em instalações animais, para duas distintas alturas de pé-direito, em condições de inverno no Brasil. O experimento foi realizado com modelos reduzidos de galpões avícolas, escala 1:10, e a análise foi feita quantificando-se a Carga Térmica de Radiação (CTR) e o Índice de Temperatura de Globo Negro e Umidade (ITGU) em diferentes horários, ao longo do período experimental. O experimento foi montado segundo um esquema de parcelas subdivididas, no delineamento em blocos casualizados. A interpretação estatística dos dados experimentais foi feita por meio da análise de variância e regressão. Para os fatores qualitativos (tipos de cobertura e pé-direito) as médias foram comparadas utilizando-se o teste de Tukey e/ou F, adotando-se o nível de 5% de probabilidade; já para o fator quantitativo, os modelos foram escolhidos com base na significância dos coeficientes de regressão, utilizando-se o teste t em nível de 5% de probabilidade, o coeficiente de determinação e o fenômeno em estudo. Verificou-se, através deste experimento, que nas horas de frio mais intenso todas as coberturas causaram desconforto térmico e todos os protótipos tiveram UR acima do máximo tolerável para o conforto animal.<br>This research had as objective the analysis of ceramic tiles and aluminum roof, commonly used in animal facilities, for two different heights, under Brazilian Winter conditions. The experiment used reduced models of poultry houses (scale 1:10) and the analysis was made by the values of Thermal Load of Radiation (TLR) and of Black Globe and Humidity Index (BGHI), at different times along the experiment. The trial was conducted in randomized complete block design. The statistical interpretation of the experimental data was made through the variance and regression analysis. For the qualitative factors (roof types and height), the means were compared using the Tukey's and/or F test, at 5% level of probability. For the quantitative factors, the models were chosen based on the significance of the regression coefficients, applying the t test, at 5% level of probability, the determination coefficient and the studied phenomena. It was verified through this experiment that during the hours of more intense cold, all the coverings caused thermal discomfort and all the prototypes had relative humidity above the tolerable maximum for the animal comfort
    corecore