53,636 research outputs found

    Tracing the Dynamics of Disk Galaxies with Optical and IR Surface Photometry: Color Gradients in M99

    Full text link
    We present optical and IR surface photometry of M99 (NGC 4254) at g, r_S i, J and K'. We also present a K' image of M51 (NGC 5194) for comparison. Fourier decomposition of the disk light reveals that the radial distribution of power depends on wavelength, which in turn implies that the spiral structure traced in the visual (i.e. young population I and dust) is different from the one detected at 2 microns (i.e. old stellar disk). We observe radial modulation of the power and a dependency of power with wavelength that are consistent with modal theory of spiral structure. A central motivation for our research is the fundamental idea of density wave theory that the passage of a spiral density wave triggers star formation. We have found a stellar population age gradient consistent with this scenario in a reddening-free, red supergiant-sensitive, Q-like photometric parameter at 6 kpc galactocentric distance across one of the arms of M99. We rule out that the change in this parameter, Q(r_SJgi), across the arm is mainly due to dust. The difference in Q(r_SJgi) going from the interarm regions to the arms also indicates that arms cannot be due exclusively to crowding of stellar orbits. We present the first measurement of Omega_p, the angular speed of the spiral pattern, and of the location of the corotation radius, derived from the drift velocity of the young stars away from their birth site. The measured Q(r_SJgi) implies a star formation rate for M99 within the range of 10-20 M_odot/yr; a disk stellar mass surface density of ~80 M_odot/pc^2; and a maximum contribution of ~20 percent from red supergiants to the K' light in a small region, and much smaller on average. We measure a K' arm--interarm contrast of 2-3, too high for M99 to be a truly isolated galaxy.Comment: 25 pages of uuencoded, compressed Postscript (text only). To appear in 1 April 1996 issue of The Astrophysical Journal. Also available, together with 2 uuencoded, compressed PostScript files with 10 figures each, at http://astro.berkeley.edu/preprints.htm

    Russian manufacturing and the threat of ‘Dutch disease’: a comparison of competitiveness developments in Russian and Ukrainian industry

    Get PDF
    This paper examines the development of Russian industry in comparison with that of Ukrainian industry during 1995–2004 in an effort to ascertain to what extent, if any, Russian manufacturing showed signs of succumbing to ‘Dutch disease’. Ukraine and Russia began the market transition with broadly similar institutions, industrial structures and levels of technology, and the economic reforms implemented in the two countries were also similar, although Ukraine was reckoned to lag behind Russia in many areas. The main difference between them is Russia’s far greater resource wealth. It follows that differences in industrial development since 1991 may to some degree be attributable to differences in initial natural resource endowments. In short, Ukraine could provide a rough approximation of how a resource-poor Russia might have developed over the transition

    Reliability of the optimized perturbation theory in the 0-dimensional O(N)O(N) scalar field model

    Full text link
    We address the reliability of the Optimized Perturbation Theory (OPT) in the context of the 0-dimensional O(N)O(N) scalar field model. The effective potential, the self-energy and the 1PI four-point Green's function for the model are computed using different optimization schemes and the results contrasted to the exact results for the model. Our results are also compared to those obtained with the 1/N1/N-expansion and with those from ordinary perturbation theory. The OPT results are shown to be stable even at large couplings and to have better convergence properties than the ones produced in the 1/N1/N-expansion. It is also shown that the principle of minimal sensitive optimization procedure used in conjunction with the OPT method tends to always produce better results, in particular when applied directly to the self-energy.Comment: 38 pages, 13 figures, v2 Physica A versio

    Topological Vertex, String Amplitudes and Spectral Functions of Hyperbolic Geometry

    Get PDF
    We discuss the homological aspects of the connection between quantum string generating function and the formal power series associated to the dimensions of chains and homologies of suitable Lie algebras. Our analysis can be considered as a new straightforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z)SL(2,{\mathbb Z})) to the partition functions of Lagrangian branes, refined vertex and open string partition functions, represented by means of formal power series that encode Lie algebra properties. The common feature in our examples lies in the modular properties of the characters of certain representations of the pertinent affine Lie algebras and in the role of Selberg-type spectral functions of an hyperbolic three-geometry associated with qq-series in the computation of the string amplitudes.Comment: Revised version. References added, results remain unchanged. arXiv admin note: text overlap with arXiv:hep-th/0701156, arXiv:1105.4571, arXiv:1206.0664 by other author

    Investigating the Relation between Galaxy Properties and the Gaussianity of the Velocity Distribution of Groups and Clusters

    Full text link
    We investigate the dependence of stellar population properties of galaxies on group dynamical stage for a subsample of Yang catalog. We classify groups according to their galaxy velocity distribution into Gaussian (G) and Non-Gaussian (NG). Using two totally independent approaches we have shown that our measurement of Gaussianity is robust and reliable. Our sample covers Yang's groups in the redshift range 0.03 \leq z \leq 0.1 having mass \geq 1014M^{14} \rm M_{\odot}. The new method, Hellinger Distance (HD), to determine whether a group has a velocity distribution Gaussian or Non-Gaussian is very effective in distinguishing between the two families. NG groups present halo masses higher than the G ones, confirming previous findings. Examining the Skewness and Kurtosis of the velocity distribution of G and NG groups, we find that faint galaxies in NG groups are mainly infalling for the first time into the groups. We show that considering only faint galaxies in the outskirts, those in NG groups are older and more metal rich than the ones in G groups. Also, examining the Projected Phase Space of cluster galaxies we see that bright and faint galactic systems in G groups are in dynamical equilibrium which does not seem to be the case in NG groups. These findings suggest that NG systems have a higher infall rate, assembling more galaxies which experienced preprocessing before entering the group.Comment: 55 pages, 5 Tables and 12 Figures. Accepted for publication in Astronomical Journa
    corecore