45 research outputs found
Initial in vitro evaluations of antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria
Aims: The aim of the study was to evaluate the in vitro antibacterial effects of
glucosinolate hydrolysis products (GHP) against plant pathogenic micro-organisms
namely Agrobacterium tumefaciens, Erwinia chrysanthemi, Pseudomonas
cichorii, Pseudomonas tomato, Xanthomonas campestris and Xanthomonas
juglandis.
Methods and Results: Using a disc diffusion assay, seven different doses of 10
GHP were tested against each bacteria. The results showed that the isothiocyanates
were potent antibacterials, whilst the other GHP were much less efficient.
Moreover, the antibacterial effects were dose-dependent, increasing with the
dose applied; 2-phenylethylisothiocyanate and sulforaphane showed the strongest
inhibitory effects. The overall results show a great potential for using the
isothiocyanates as an alternative tool to control undesired bacterial growth in
plants.
Conclusions: Glucosinolate hydrolysis products and more specifically the
isothiocyanates: benzylisothiocyanate, 2-phenylethylisothiocyanate, the isothiocyanate
Mix and sulforaphane, were effective phytochemicals against the in vitro
growth of the phytopathogenic bacteria. The antibacterial activity exhibited by
these phytochemicals reinforces their potential as alternatives to the traditional
chemical control of phytopathogenic bacteria.
Significance and Impact of the Study: This current in vitro study is the first
providing comparative data on GHP as potential control agents for plant
pathogenic bacteria. However, more studies are needed to determine their
possible allelopathic impacts e.g. inhibition of plant growth and negative effects
on beneficial soil bacteria and fungi (mycorrhizae
DNA metabarcoding of fungal diversity in air and snow of Livingston Island, South Shetland Islands, Antarctica.
We assessed fungal diversity present in air and freshly deposited snow samples obtained from Livingston Island, Antarctica, using DNA metabarcoding through high throughput sequencing (HTS). A total of 740 m3 of air were pumped through a 0.22 µm membrane. Snow obtained shortly after deposition was kept at room temperature and yielded 3.760 L of water, which was filtered using Sterivex membranes of 0.22 µm mesh size. The total DNA present was extracted and sequenced. We detected 171 fungal amplicon sequence variants (ASVs), 70 from the air and 142 from the snow. They were dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota and Mucoromycota. Pseudogymnoascus, Cladosporium, Mortierella and Penicillium sp. were the most dominant ASVs detected in the air in rank order. In snow, Cladosporium, Pseudogymnoascus, Penicillium, Meyerozyma, Lecidea, Malassezia, Hanseniaspora, Austroplaca, Mortierella, Rhodotorula, Penicillium, Thelebolus, Aspergillus, Poaceicola, Glarea and Lecanora were the dominant ASVs present. In general, the two fungal assemblages displayed high diversity, richness, and dominance indices, with the assemblage found in snow having the highest diversity indices. Of the total fungal ASVs detected, 29 were only present in the air sample and 101 in the snow sample, with only 41 present in both samples; however, when only the dominant taxa from both samples were compared none occurred only in the air and, among the rare portion, 26 taxa occurred in both air and snow. Application of HTS revealed the presence of a more diverse fungal community in the air and snow of Livingston Island in comparison with studies using traditional isolation methods. The assemblages were dominated by cold-adapted and cosmopolitan fungal taxa, including members of the genera Pseudogymnoascus, Malassezia and Rhodotorula, which include some taxa reported as opportunistic. Our results support the hypothesis that the presence of microbiota in the airspora indicates the possibility of dispersal around Antarctica in the air column. However, further aeromycology studies are required to understand the dynamics of fungal dispersal within and beyond Antarctica
Using metabarcoding to assess Viridiplantae sequence diversity present in Antarctic glacial ice
Antarctica contains most of the glacial ice on the planet, a habitat that is largely unexplored by biologists. Recent warming in parts of Antarctica, particularly the Antarctic Peninsula region, is leading to widespread glacial retreat, releasing melt water and, potentially, contained biological material and propagules. In this study, we used a DNA metabarcoding approach to characterize Viridiplantae DNA present in Antarctic glacial ice. Ice samples from six glaciers in the South Shetland Islands and Antarctic Peninsula were analysed, detecting the presence of DNA representing a total of 16 taxa including 11 Chlorophyta (green algae) and five Magnoliophyta (flowering plants). The green algae may indicate the presence of a viable algal community in the ice or simply of preserved DNA, and the sequence diversity assigned included representatives of Chlorophyta not previously recorded in Antarctica. The presence of flowering plant DNA is most likely to be associated with pollen or tissue fragments introduced by humans
Life in ruins: DNA metabarcoding contributes to the history of Whalers Bay wooden structures at Deception Island, South Shetland Islands
Deception Island is an Antarctic Specially Managed Area that houses historically important sites such as the remains of historical wooden buildings. The impacts of fungal communities on wood in polar historical sites have been investigated, but little is known of the impacts of other eukaryote groups. In the current study we used high-throughput sequencing to investigate the diversity of non-fungal eukaryotic organisms present in wood samples from Whalers Bay. Four sites were sampled, and DNA sequences representing three kingdoms (Chromista, Protozoa and Viridiplantae) and four phyla (Ciliophora, Perclozoa, Chlorophyta and Magnoliophyta) were identified, representing a total of 43 taxa. Biscoe House Annex hosted the richest diversity, with 20 taxa, followed by the whaling boat, Biscoe House and the Hunting Lodge, with 16, 15 and 12 taxa, respectively. The most frequently detected sequences were assigned to the ciliate group Sporadotrichida, some of which are known to play a role in cellulose degradation. Among the Chlorophyta, the sequences detected included common taxa previously recorded, but the flowering plant data represented only exotic taxa, probably associated with human activity or airborne transfer. The use of high-throughput sequencing provided valuable data on communities associated with anthropogenically sourced and now decaying wood in Antarctica
DNA metabarcoding uncovers fungal diversity in soils of protected and non-protected areas on Deception Island, Antarctica
We assessed soil fungal diversity at two sites on Deception Island, South Shetland Islands, Antarctica using DNA metabarcoding analysis. The first site was a relatively undisturbed area, and the second was much more heavily impacted by research and tourism. We detected 346 fungal amplicon sequence variants dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota and Chytridiomycota. We also detected taxa belonging to the rare phyla Mucoromycota and Rozellomycota, which have been difficult to detect in Antarctica by traditional isolation methods. Cladosporium sp., Pseudogymnoascus roseus, Leotiomycetes sp. 2, Penicillium sp., Mortierella sp. 1, Mortierella sp. 2, Pseudogymnoascus appendiculatus and Pseudogymnoascus sp. were the most dominant fungi. In addition, 440,153 of the total of 1,214,875 reads detected could be classified only at the level of Fungi. In both sampling areas the DNA of opportunistic, phytopathogenic and symbiotic fungi were detected, which might have been introduced by human activities, transported by birds or wind, and/or represent resident fungi not previously reported from Antarctica. Further long-term studies are required to elucidate how biological colonization in the island may be affected by climatic changes and/or other anthropogenic influences
DNA metabarcoding of non-fungal eukaryotic diversity in air and snow of Livingston Island, South Shetland Islands, Antarctica
A major natural route of dispersal to Antarctica is often assumed to be atmospheric transport, although few studies have documented this in detail. Aerial dispersal to Antarctica is very challenging as the continent is geographically remote from other land areas and is isolated by the atmospheric circumpolar vortex. Detailed information about aerial routes by which microorganisms arrive and circulate in Antarctica is generally lacking, as few aerobiological studies have focused on eukaryotes and those that have predominantly relied on traditional morphological identification. Recent advances in molecular biology, such as DNA metabarcoding by high throughput sequencing (HTS), have provided a powerful new tool for the study of atmospheric biological diversity and can retrieve levels of diversity an order of magnitude higher than traditional methods. In this study, we used HTS to investigate the diversity of non-fungal eukaryotes present in the atmosphere and freshly precipitated snow on Livingston Island. In a total of 740 m3 of air and 3.76 L of snow sampled, representatives of four kingdoms (Protozoa, Chromista, Viridiplantae and Animalia) and five phyla (Ciliophora, Ochrophyta, Chlorophyta, Magnoliophyta and Porifera) were found. The most diverse phylum was Chlorophyta, represented in our samples by 10 taxa, with Trebouxia asymmetrica Friedl & Gärtner the most abundant representative
Diversity, distribution and ecology of fungal community present in Antarctic lake sediments uncovered by DNA metabarcoding
We assessed fungal diversity in sediments obtained from four lakes in the South Shetland Islands and James Ross Island, Antarctica, using DNA metabarcoding. We detected 218 amplicon sequence variants (ASVs) dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota and Chytridiomycota. In addition, the rare phyla Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Monoblepharomycota, Rozellomycota and Zoopagomycota as well as fungal-like Straminopila belonging to the phyla Bacillariophyta and Oomycota were detected. The fungal assemblages were dominated by unknown fungal taxa (Fungal sp. 1 and Fungal sp. 2), followed by Talaromyces rubicundus and Dactylonectria anthuriicola. In general, they displayed high diversity, richness and moderate dominance. Sequences representing saprophytic, pathogenic and symbiotic fungi were detected, including the phytopathogenic fungus D. anthuriicola that was abundant, in the relatively young Soto Lake on Deception Island. The lake sediments studied contained the DNA of rich, diverse and complex fungal communities, including both fungi commonly reported in Antarctica and other taxa considered to be rare. However, as the study was based on the use of environmental DNA, which does not unequivocally confirm the presence of active or viable organisms, further studies using other approaches such as shotgun sequencing are required to elucidate the ecology of fungi in these Antarctic lake sediments
Soil Fungal Diversity and Ecology Assessed Using DNA Metabarcoding along a Deglaciated Chronosequence at Clearwater Mesa, James Ross Island, Antarctic Peninsula
We studied the fungal diversity present in soils sampled along a deglaciated chronosequence from para- to periglacial conditions on James Ross Island, north-east Antarctic Peninsula, using DNA metabarcoding. A total of 88 amplicon sequence variants (ASVs) were detected, dominated by the phyla Ascomycota, Basidiomycota and Mortierellomycota. The uncommon phyla Chytridiomycota, Rozellomycota, Monoblepharomycota, Zoopagomycota and Basidiobolomycota were detected. Unknown fungi identified at higher hierarchical taxonomic levels (Fungal sp. 1, Fungal sp. 2, Spizellomycetales sp. and Rozellomycotina sp.) and taxa identified at generic and specific levels (Mortierella sp., Pseudogymnoascus sp., Mortierella alpina, M. turficola, Neoascochyta paspali, Penicillium sp. and Betamyces sp.) dominated the assemblages. In general, the assemblages displayed high diversity and richness, and moderate dominance. Only 12 of the fungal ASVs were detected in all chronosequence soils sampled. Sequences representing saprophytic, pathogenic and symbiotic fungi were detected. Based on the sequence diversity obtained, Clearwater Mesa soils contain a complex fungal community, including the presence of fungal groups generally considered rare in Antarctica, with dominant taxa recognized as cold-adapted cosmopolitan, endemic, saprotrophic and phytopathogenic fungi. Clearwater Mesa ecosystems are impacted by the effects of regional climatic changes, and may provide a natural observatory to understand climate change effects over time
DNA metabarcoding reveal hidden diversity of periphytic eukaryotes on marine Antarctic macroalgae
Polar marine macroalgae thrive in extreme conditions, often displaying geographic isolation and high degree of endemism. The “phycosphere” refers to the zone around the algae inhabited by microrganisms. Our study used DNA metabarcoding to survey the eukaryotic communities associated with seven seaweed species obtained at King George Island (South Shetland Islands, maritime Antarctic), including two Rhodophyta, two Chlorophyta and three Phaeophyceae. The ITS2 region was used as a barcode and our analysis yielded 77 eukaryotic ASVs spanning five Kingdoms (Fungi, Metazoa, Chromista, Protozoa, and Viridiplantae) and ten phyla (Ascomycota, Basidiomycota, Cercozoa, Ciliophora, Ochrophyta, Amebozoa, Chlorophyta, Rhodophyta, Bryophyta and Cnidaria). Additionally, we identified 14 potential new occurrence records for Antarctica. Ciliates and green algae were the most species-rich groups. The most abundant assigned associated species was Monostroma angicava (Chrorophyta). Within the macroalgal, the Chlorophyceans Ulothrix sp. hosted the greatest number of taxa, followed by Monostroma hariotii. Our data suggested that Antarctic macroalgae host a rich diversity of associated organisms and the biodiversity associated with the phycosphere remains underestimated
A Pilot Investigation of the Hidden Communities Associated With Dryas octopetala L. (Rosaceae) in Svalbard Using DNA Metabarcoding
Dryas octopetala is one of the most important botanical components of Arctic tundra. In parts of the Norwegian High Arctic Archipelago of Svalbard it can face strong grazing pressure, in particular of its flowers, by the Svalbard reindeer, whilst its production of mature viable seeds may be impacted by climate changes. Diverse organisms are associated with the habitat provided by flowering plants, some with the roots (rhizosphere) and others with the above-ground surface of a plant (phyllosphere). Climatic changes affecting Svalbard may lead to the local expansion or reduction of plant populations and their associated communities. In this study, we carried out an initial investigation of non-fungal eukaryotic communities associated with D. octopetala collected from four sampling locations at Vindodden on Svalbard using DNA metabarcoding. The diversity of organisms assigned based on the DNA sequences obtained was higher in the rhizosphere (6 phyla) than in the phyllosphere (11 phyla). The assignments included taxa that are common in Svalbard as well as some from various parts of the world but not recorded from the archipelago
