32 research outputs found

    Therapeutic DNA Vaccines: The Final Step for Success

    Get PDF
    Therapeutic DNA vaccines are mostly plasmidic constructs containing a strong promoter that allows in situ transcription and translation of one or many encoded proteins/antigens to induce protective cellular and humoral immune responses against different pathogenic organisms [1–5]. Currently, at least 114 open clinical studies are recruiting patients for distinct clinical phases using a DNAvaccine approach

    Surface layer protein SlpB mediates immunodulation and adhesion in the probiotic Propionibacterium freudenreichii CIRM-BIA 129.

    No full text
    Propionibacterium freudenreichii est une bactérie Gram-positive bénéfique, traditionnellement utilisée comme levain d’affinage fromager, qui bénéficie du statut GRAS (Generally Recognized As Safe). P. freudenreichii a révélé un effet immunomodulateur qui a été confirmé in vivo par la capacité à protéger des souris d’une colite aigüe induite. L’effet anti-inflammatoire est cependant hautement souche-dépendant. Il est dû, au moins en partie, à des composés de surface clés qui favorisent ces effets probiotiques. Les bactéries Gram-positives, y compris P. freudenreichii, peuvent être recouvertes d’une couche extérieure protéique, appelée « surface-layer », paracristalline, et formée par l’autoassemblage de protéines dites de S-layer (Slps). Les Slps, dans différentes bactéries, sont impliquées dans plusieurs caractéristiques probiotiques, telles que l’adhésion aux cellules de l’hôte et au mucus, la persistance dans l’intestin, ou encore l’immunomodulation. Le but de cette étude est d’étudil’immunomodulation. Le but de cette étude est d’étudier, chez une souche probiotique de P. freudenreichii, la protéine de surface qui joue le principal rôle dans les interactions probiotiques avec l’hôte. La souche P. freudenreichii CIRM-BIA 129, récemment reconnue comme immunomodulatrice prometteuse, possède plusieurs protéines de surface Slps, y compris SlpB. Dans la présente étude, l’inactivation du gène correspondant, dans la souche mutante CB129¿slpB, a provoqué une baisse drastique de l’adhésion aux cellules intestinales épithéliales HT-29, confirmant le rôle clé des Slps dans l’adhésiPropionibacterium freudenreichii is a beneficial Gram-positive bacterium, traditionally used as a cheese ripening starter, with the GRAS status (Generally Recognized As Safe). P. freudenreichii has revealed an immunomodulatory effect confirmed in vivo by the ability to protect mice from induced acute colitis. The anti-inflammatory effect is however highly strain-dependent and due, at least in part, to key surface compounds favouring probiotic effects. Gram-positive bacteria, including P. freudenreichii, can be covered with an external proteinaceous layer called a surface-layer paracrystalin layer and formed by the self-assembly of surface-layer-proteins (Slps). Slps were shown, in different bacteria, to be involved in several probiotics traits, such as adhesion to host cells and mucus, persistence within the gut, or immunomodulation. The aim of this study is to investigate, in a P. freudenreichii probiotic strain, the surface protein that plays the main role in the probioticinteraction with the host. The P. freudenreichii CIRM-BIA 129 strain recently revealed promising immunomodulatory properties and possesses several Slps, including SlpB. In the presented work, inactivation of the corresponding gene, CB129¿slpBa mutant strain, caused a drastic decrease in adhesion to intestinal epithelial HT-29 cells, further evidencing the key role of Slps in cell adhesion. we investigated immune response of HT-29 cells towards P. freudenreichii CIRM-BIA 129 and CB129¿slpB. The wild type strain mainly induced expression of the immunomodulatory IL-10 by the cells. Interestingly, t

    Cloning, expression and characterization of the colonystimulating factor recombinant human granulocyte (rhG-CSF) in Escherichia coli

    No full text
    O sistema de expressão em Escherichia coli foi o primeiro a ser utilizado para produzir produtos farmacêuticos recombinantes e tem muitas vantagens quando comparado com sistemas eucarióticos, como o fácil cultivo, baixo custo e alto potencial de produção. O fator estimulador de colônias de granulócito (G-CSF) atua principalmente promovendo a maturação dos neutrófilos e estimulando sua atividade fagocítica e quimiotática, além de estar envolvido com o processo de segmentação nuclear dessas células. O fator estimulador de colônias de granulócitos humano recombinante (rhG-CSF) tem sido produzido por engenharia genética em Escherichia coli, e é usado no tratamento de diversas patologias, sobretudo em neutropenias provocadas pela quimioterapia usada no tratamento de tumores, pela radioterapia e pelo uso de drogas que suprimem a produção de células mieloides. Desse modo, o presente estudo teve como objetivo a expressão da proteína rhGCSF em bactérias Escherichia coli. A clonagem do gene rhG-CSF no vetor de expressão pET-28a(+) foi realizada nos sítios de restrição das enzimas EcoRI e XhoI, e a expressão da proteína recombinante em cepas de bactéria Escherichia coli BL21DE3 foi obtida com sucesso. A proteína rhG-CSF, fundida à cauda de seis histidinas, foi purificada com êxito e identificada pelas técnicas de Western Blotting e por espectrometria de massas. São necessários estudos para avaliar a integridade estrutural e atividade biológica da proteína produzida, que se confirmada, possibilita que esta seja produzida em escala piloto.The expression system in Escherichia coli was the first to be used to produce recombinant pharmaceuticals and has many advantages compared to eukaryotic systems, such as easy cultivation and high production potential at low costs. The granulocyte colony (G-CSF) stimulating factor acts primarily by promoting the maturation of neutrophils and stimulating their phagocytic and chemotactic activity. G-CSF is also involved with the process of neutrophils nuclear segmentation. The recombinant human granulocyte colonies stimulating factor (rhG-CSF) has been produced by genetic engineering in Escherichia coli, and it is used to treat of several conditions, especially neutropenia caused by chemotherapy used in the treatment of tumors, by radiotherapy and by the use of drugs that suppress the production of myeloid cells. The present study aimed the expression of rhG-CSF protein in Escherichia coli bacteria. The cloning of rhG-CSF gene in the expression vector pET- 28a (+) was carried out on the restriction sites of the EcoRI and XhoI enzymes. Expression of the recombinant protein in Escherichia coli BL21DE3 was successfully achieved. The rhG-CSF protein, fused with a six histidine tag, was obtained and successfully purified and identified by the Western Blotting and by mass spectrometry techniques. Studies are needed to assess the structural integrity and biological activity of the protein produced, which, if confirmed, enables the production on a pilot scale

    La protéine de couche de surface SlpB assure la médiation de l’immunomodulation et de l’adhésion chez le probiotique Propionibacterium freudenreichii CIRM-BIA 129.

    No full text
    Propionibacterium freudenreichii is a beneficial Gram-positive bacterium, traditionally used as a cheese ripening starter, with the GRAS status (Generally Recognized As Safe). P. freudenreichii has revealed an immunomodulatory effect confirmed in vivo by the ability to protect mice from induced acute colitis. The anti-inflammatory effect is however highly strain-dependent and due, at least in part, to key surface compounds favouring probiotic effects. Gram-positive bacteria, including P. freudenreichii, can be covered with an external proteinaceous layer called a surface-layer paracrystalin layer and formed by the self-assembly of surface-layer-proteins (Slps). Slps were shown, in different bacteria, to be involved in several probiotics traits, such as adhesion to host cells and mucus, persistence within the gut, or immunomodulation. The aim of this study is to investigate, in a P. freudenreichii probiotic strain, the surface protein that plays the main role in the probioticinteraction with the host. The P. freudenreichii CIRM-BIA 129 strain recently revealed promising immunomodulatory properties and possesses several Slps, including SlpB. In the presented work, inactivation of the corresponding gene, CB129¿slpBa mutant strain, caused a drastic decrease in adhesion to intestinal epithelial HT-29 cells, further evidencing the key role of Slps in cell adhesion. we investigated immune response of HT-29 cells towards P. freudenreichii CIRM-BIA 129 and CB129¿slpB. The wild type strain mainly induced expression of the immunomodulatory IL-10 by the cells. Interestingly, thPropionibacterium freudenreichii est une bactérie Gram-positive bénéfique, traditionnellement utilisée comme levain d’affinage fromager, qui bénéficie du statut GRAS (Generally Recognized As Safe). P. freudenreichii a révélé un effet immunomodulateur qui a été confirmé in vivo par la capacité à protéger des souris d’une colite aigüe induite. L’effet anti-inflammatoire est cependant hautement souche-dépendant. Il est dû, au moins en partie, à des composés de surface clés qui favorisent ces effets probiotiques. Les bactéries Gram-positives, y compris P. freudenreichii, peuvent être recouvertes d’une couche extérieure protéique, appelée « surface-layer », paracristalline, et formée par l’autoassemblage de protéines dites de S-layer (Slps). Les Slps, dans différentes bactéries, sont impliquées dans plusieurs caractéristiques probiotiques, telles que l’adhésion aux cellules de l’hôte et au mucus, la persistance dans l’intestin, ou encore l’immunomodulation. Le but de cette étude est d’étudil’immunomodulation. Le but de cette étude est d’étudier, chez une souche probiotique de P. freudenreichii, la protéine de surface qui joue le principal rôle dans les interactions probiotiques avec l’hôte. La souche P. freudenreichii CIRM-BIA 129, récemment reconnue comme immunomodulatrice prometteuse, possède plusieurs protéines de surface Slps, y compris SlpB. Dans la présente étude, l’inactivation du gène correspondant, dans la souche mutante CB129¿slpB, a provoqué une baisse drastique de l’adhésion aux cellules intestinales épithéliales HT-29, confirmant le rôle clé des Slps dans l’adhés

    Dairy Propionibacteria: Versatile Probiotics

    No full text
    Dairy propionibacteria are used as cheese ripening starters, as biopreservative and as beneficial additives, in the food industry. The main species, Propionibacterium freudenreichii, is known as GRAS (Generally Recognized As Safe, USA, FDA). In addition to another dairy species, Propionibacterium acidipropionici, they are included in QPS (Qualified Presumption of Safety) list. Additional to their well-known technological application, dairy propionibacteria increasingly attract attention for their promising probiotic properties. The purpose of this review is to summarize the probiotic characteristics of dairy propionibacteria reported by the updated literature. Indeed, they meet the selection criteria for probiotic bacteria, such as the ability to endure digestive stressing conditions and to adhere to intestinal epithelial cells. This is a prerequisite to bacterial persistence within the gut. The reported beneficial effects are ranked according to property’s type: microbiota modulation, immunomodulation, and cancer modulation. The proposed molecular mechanisms are discussed. Dairy propionibacteria are described as producers of nutraceuticals and beneficial metabolites that are responsible for their versatile probiotic attributes include short chain fatty acids (SCFAs), conjugated fatty acids, surface proteins, and 1,4-dihydroxy-2-naphtoic acid (DHNA). These metabolites possess beneficial properties and their production depends on the strain and on the growth medium. The choice of the fermented food matrix may thus determine the probiotic properties of the ingested product. This review approaches dairy propionibacteria, with an interest in both technological abilities and probiotic attributes

    Cheese matrix effect on proteolysis of P. freudenreichii immunomodulatory proteins

    No full text
    Propionibacterium freudenreichii is an emergent probiotic, presenting several beneficial effects including anti-inflammatory properties, mediated by surface layer proteins (SLPs) belonged to the S-layer lattice, in particularly the protein SlpB. We hypothesize cheese matrix may be the best delivery vehicle for P. freudenreichii’s anti-inflammatory potential, by enhancing propionibacteria survival to digestives stresses, and by allowing undamaged SLPs to reach the digestive tract. Firstly, we compared the immunomodulatory effects of P. freudenreichii and intact SLPs, to SLPs digested by trypsin, i.e SLPs-peptides on HT29-cells. In contrast to P. freudenreichii and SLPs, SLPs peptides don’t reduce pro-inflammatory cytokines expression during cells co-stimulation with lipopolysaccharide. This result confirmed the importance to protect SLPs from proteolysis to permit them to trigger gut immune system. Secondly, we evaluated propionibacteria resistance and slpB proteolysis during in vitro static digestion, in different delivery vehicles increasingly concentrated in dairy proteins: milk ultrafiltrate, milk and cheese. The experiment clearly showed the protective effect of the Slp proteins by the cheese matrix and better bacterial viability. Then, we carried out in vitro a dynamic digestion using Didgi® system. We selected two matrices only: the milk ultrafiltrate and the cheese. We decided to apply fixed digestion parameters for both matrices: the digestive parameters of cheese. The results show a protective effect of the cheese matrix on the viability of the propionic bacteria and on SLPs against digestive proteolysis. Taken together, those results show that cheese is an adequate delivery vehicle for P. freudenreichii immunomodulatory proteins

    Cheese matrix effect on proteolysis of P. freudenreichii immunomodulatory proteins

    No full text
    Propionibacterium freudenreichii is an emergent probiotic, presenting several beneficial effects including anti-inflammatory properties, mediated by surface layer proteins (SLPs) belonged to the S-layer lattice, in particularly the protein SlpB. We hypothesize cheese matrix may be the best delivery vehicle for P. freudenreichii’s anti-inflammatory potential, by enhancing propionibacteria survival to digestives stresses, and by allowing undamaged SLPs to reach the digestive tract. Firstly, we compared the immunomodulatory effects of P. freudenreichii and intact SLPs, to SLPs digested by trypsin, i.e SLPs-peptides on HT29-cells. In contrast to P. freudenreichii and SLPs, SLPs peptides don’t reduce pro-inflammatory cytokines expression during cells co-stimulation with lipopolysaccharide. This result confirmed the importance to protect SLPs from proteolysis to permit them to trigger gut immune system. Secondly, we evaluated propionibacteria resistance and slpB proteolysis during in vitro static digestion, in different delivery vehicles increasingly concentrated in dairy proteins: milk ultrafiltrate, milk and cheese. The experiment clearly showed the protective effect of the Slp proteins by the cheese matrix and better bacterial viability. Then, we carried out in vitro a dynamic digestion using Didgi® system. We selected two matrices only: the milk ultrafiltrate and the cheese. We decided to apply fixed digestion parameters for both matrices: the digestive parameters of cheese. The results show a protective effect of the cheese matrix on the viability of the propionic bacteria and on SLPs against digestive proteolysis. Taken together, those results show that cheese is an adequate delivery vehicle for P. freudenreichii immunomodulatory proteins

    In vitro assessment of P. freudenreichii adaptation to caecal environment

    No full text
    IntroductionPropionibacterium freudenreichii (PF) is a Swiss-type cheeses starter and has versatile probiotic properties due to various beneficial metabolites. PF recently emerged as a suitable candidate to develop fermented functional foods. Delivery of viable bacteria to the colon is crucial for in situ beneficial metabolites production. The delivery vehicle was shown to influence P. freudenreichii tolerance towards digestive stresses. It is also suggested to influence PF adaptation to the colon environment. In addition, during digestion, the delivery vehicle may prevent or allow proteolysis of surface proteins. These surface proteins are generally thought to contribute to bacteria tolerance towards environmental stresses. AimThis study aimed at evaluating PF (strain CIRM-BIA 129) adaptation to the caecal environment, according to the delivery vehicle. Besides, we evaluated PF survival in the caecal environment after removal of bacterial surface proteins by enzymatic proteolysis. We address the plausible role of S-layer protein SlpB in PF adaptation and survival.MethodsCaecal medium was prepared from caecal contents recovered from piglets. PF pellets were harvested from cultures in Yeast Extract-Lactate (YEL), in Milk ultrafiltrate, or from cheese. Wild-type and SlpB KO mutant PF were further compared with respect to survival in caecal medium. Bacterial pellets were also submitted to surface proteins proteolysis to mimic digestion. Cultures were incubated 50 h at 37°C in anaerobiosis. Survival was monitored by plate counting, optical density and by live/dead fluorescence labeling. ResultsPF survival decreased in the caecal medium with a similar rate, whatever the growth medium tested. However, optical density was stable and the epifluorecence images did not show dead bacteria. Reduced survival rate was not due to significant cell death.PF seemed rather to enter a viable but nonculturable state in the caecal medium. Surprisingly, proteolytic removal of surface layer proteins enhanced PF culturable state in caecal medium. In addition, the mutation of SlpB did not change PF culturable state but surface proteins proteolysis enhanced also PF KO SlpB s culturable state.ConclusionThese results indicate that surface proteins proteolysis during digestion may enhance PF survival and metabolic activity within the caecal medium. A comparative proteomic analysis will address the molecular mechanisms involved in enhanced survival

    Cheese matrix protects the immunomodulatory surface protein SlpB of Propionibacterium freudenreichii during in vitro digestion

    No full text
    Propionibacterium freudenreichii is a traditional Swiss-type cheeses starter and constitutes an emergent probiotic,exerting several beneficial effects, including anti-inflammatory modulation of gut inflammation. This featurerelies on several metabolites and on surface proteins, with a prominent role of the surface protein SlpB. In thisstudy, we firstly investigated the relevance to avoid SlpB digestive proteolysis, by comparing the effect of i) P.freudenreichii CIRM-BIA 129, ii) its native Slps, or iii) peptides resulting from Slps digestive proteolysis, withrespect to modulation of HT-29 cells response to a lipopolysaccharide (LPS) challenge. The anti-inflammatoryeffect exerted by P. freudenreichii CIRM-BIA 129 and by its native surface proteins (Slps) on HT-29 cells wasabolished by digestive proteolysis. This result confirmed the importance to protect immunomodulatory surfaceproteins from digestive proteolysis in order to allow gut immune system modulation. Thus, we examined theeffect of dairy matrices on P. freudenreichii viability and on SlpB integrity during digestion. In comparison withliquid matrices, the cheese matrix provided an enhanced tolerance towards digestive stresses and protection ofSlpB towards proteolysis, during two in vitro digestion models: static and dynamic. Taken together, these resultsshow that cheese is an adequate delivery vehicle for P. freudenreichii immunomodulatory proteins. This opensperspectives for the development of fermented dairy functional foods aimed at target populations at high risk fordiet-related diseases with an inflammatory component

    The Emmental cheese matrix protects Propionibacterium freudenreichii’s immunomodulatory surface protein SlpB from proteolysis during digestion

    No full text
    INTRODUCTIONPropionibacterium freudenreichii is an emergent probiotic bacterium, belonging to dairy propionibacteria, within the group of Actinomycetales, and possessing the GRAS (Generally Recognized As Safe, USA, FDA) and QPS (Qualified Presumption of Safety, EFSA, European Union) status. It is a traditional Swiss-type cheeses starter and an emergent probiotic, exerting several beneficial effects, including anti-inflammatory modulation of gut inflammation. This feature relies on several metabolites and on surface proteins including in particular the surface protein SlpB. METHODIn the present study, we assessed first the impact of proteolytic degradation of SlpB on its immunomodulatory effect on colon epithelial HT-29 cells. Intact P. freudenreichii cells, purified surface layer proteins (SLPs), as well as trypsin-proteolyzed SLPs, were used to stimulate HT-29 cells, in the presence or absence of pro-inflamatory LPS. Cytokines were then quantified to evaluate the inflammatory response. We then investigated the potential of cheese matrix as a delivery vehicle of anti-inflammatory P. freudenreichii MAMP to the colon, by comparing dairy liquids matrices to a solid Swiss-type cheese matrix, using two in vitro digestion models. Integrity of SlpB was monitored using western blotting.RESULTSIn this study, we firstly investigated the relevance to avoid SlpB digestive proteolysis, by comparing the effect of i) P. freudenreichii CIRM-BIA 129, ii) its native SLPs, or iii) peptides resulting from SLPs stimulations, with respect to modulation of HT-29 cells response to lipopolysaccharide (LPS) challenge. The anti-inflammatory effect exerted by P. freudenreichii CIRM-BIA 129 and by native surface proteins (SLPs) on HT-29 cells was abolished by digestive proteolysis. This result confirmed the importance to protect immunomodulatory surface proteins from digestive proteolysis in order to allow gut immune system modulation. Thus, we examined the effect of dairy matrices on P. freudenreichii viability and on SlpB integrity during digestion. In comparison with liquid matrices, the cheese matrix provided an enhanced tolerance to digestive stresses and protection of SlpB towards proteolysis, during two in vitro digestion models: static and dynamic. CONCLUSIONThese in vitro results provide new insights into the matrix effect on P. freudenreichii probiotic functionalities. The cheese matrix offers significant protection against the digestion stresses by enhancing survival, and by protecting surface layer proteins from proteolysis. However, in vivo investigations are necessary to study the matrix effect during digestion, to follow SLPs expression and to evaluate the matrix effect on immunomodulation by P. freudenreichii within the gut. Such data accordingly will allow the development of new functional foods for the delivery of P. freudenreichii to the gastrointestinal tract of humans in the aim to help prevention or treatment of life-style related diseases with an inflammatory component
    corecore