28 research outputs found

    A retrospective and agenda for future research on Chinese outward foreign direct investment

    Get PDF
    Our original paper “The determinants of Chinese Outward Foreign Direct Investment” was the first theoretically based empirical analysis of the phenomenon. It utilised internalisation theory to show that Chinese state-owned firms reacted to home country market imperfections to surmount barriers to foreign entry arising from naivety and the lack of obvious ownership advantages, leveraging institutional factors including favourable policy stimuli. This special theory explained outward foreign direct investment (OFDI) but provided surprises. These included the apparent appetite for risk evinced by these early investors, causing us to conjecture that domestic market imperfections, particularly in the domestic capital market, might be responsible. The article stimulated a massive subsequent, largely successful, research effort on emerging country multinationals. In this Retrospective article we review some of the main strands of research that ensued, for the insight they offer for the theme of our commentary. Our theme is that theoretical development can only come through embracing yet more challenging, different, and new contexts, and we make suggestions for future research directions

    Role of Ag in La1-xAgxMnO3 manganite perovskite

    No full text
    Electron-energy-loss spectroscopy (EELS) has been used to study the element contents of the grains in the bulk polycrystalline La 1-xAg xMnO 3 ceramic samples prepared by conventional solid-state reaction process in air. Only characterized core-shell ionization-edge EELS spectra of La, Mn, and O were observed while no spectrum of Ag was detected, indicating that Ag is not doped into manganite perovskites. However, it was found by electron spin resonance investigation that the ferromagnetic phase is enhanced with the increase of the nominal Ag composition and reaches its maximum around x=0.35 in the ferromagnetic and paramagnetic coexistence of La 1-xAg xMnO 3 systems. The unique role of Ag was ascribed to the introduction of oxygen into manganite perovskites, leading to further oxidation of manganite perovskite grains

    Performance and evaluation of nonasbestos organic brake friction composites with SiC particles as an abrasive

    No full text
    The effects of silicon carbide (SiC) as an abrasive on friction and wear performance of nonasbestos organic brake friction composites were studied using a tailored series of samples with 0—14.6 vol.% SiC. Friction coefficient of the friction composites containing SiC increased with increasing SiC content; especially, the thermal fade of the friction material without SiC (SiC-0) improved. The specific wear rate of the friction composites containing SiC increased with SiC added up to 9.0 vol.% and then turned down, but the negative specific wear rate of SiC-0 obviously improved. With elevating friction temperature, an increase in both friction coefficient and wear of all the samples was observed. The extension evaluation method represents an effective tool to rank the friction composites. The ranking of five friction materials, described in the weighted average dependent degrees, was evaluated in the order from the best to the worst: SiC-3.4, SiC-14.6, SiC-5.6, SiC-0, and SiC-9.0. The formulation SiC-3.4 exhibited the best overall quality, and was recommended for future optimization of the brake friction composites. Microstructures of friction surfaces of the brake friction composites were characterized using scanning electron microscopy with energy dispersive X-ray microanalysis and electron microprobe analysis, and phase analysis was performed using X-ray powder diffraction methods. Formation and development of the friction layer were discussed. The friction layer, known as secondary plateaus, was easily formed and it grew among the adjacent or lined-up primary plateaus, which were helpful for improving the friction stability and wear resistance

    Development of eco-friendly brake friction composites containing flax fibers

    Get PDF
    Eco-friendly brake friction composites with good friction performance were developed. The raw materials utilized were selected according to eco-friendly criterion that natural products should be preferably chosen. The formulations are composed of plant flax fiber, mineral basalt fiber, and wollastonite as reinforcements, natural graphite as solid lubricant, zircon as abrasive, vermiculite and baryte as functional and space fillers, and cardanol-based benzoxazine-toughened phenolic resin as binder. To isolate the flax fibers, chemical and physical methods including drying, room temperature alkaline solution, and acid steam treatment were performed and fibers with micro-fibrillated structure on the surface were formed. A new cardanol-based benzoxazine synthesized by the reactions among cardanol, aniline, and formaldehyde was used as toughening for phenolic resin. The effects of both the content of treated flax fibers and friction temperature on friction performance, friction coefficient and specific wear rate, of the friction composites were evaluated by the extension evaluation method.Web of Science311068968

    Effects of alumina in nonmetallic brake friction materials on friction performance

    No full text
    The effects of alumina (Al2O3) as an abrasive on brake friction performance and friction layers of nonmetallic brake friction materials were evaluated. Five experimental compositions containing from 0 to 14.6 vol% alumina were tested (Al2O3—0, 3.4, 5.6, 9.0, and 14.6 vol%). The experimental results indicated that alumina enhances friction coefficient and improves wear performance. The formation and development of friction layers were characterized using X-ray fluorescence spectrometry and scanning electron microscopy with energy dispersive X-ray analysis. Phenomena of baryte film and transferred iron-containing film formed on the friction surfaces were observed. Baryte films were detected on specimens containing from 0 to 5.6 vol% alumina. Iron-containing films were detected on surfaces of all alumina-containing specimens but not on the material without alumina. The role of abrasive in nonmetallic friction materials was studied in relation to formulation, friction performance, and friction surfaces
    corecore