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ABSTRACT: Eco-friendly brake friction composites with good friction performance were 

developed. The raw materials utilized were selected according to eco-friendly criterion that 

natural products should be preferably chosen. The formulations are composed of plant flax fiber, 

mineral basalt fiber, and wollastonite as reinforcements, natural graphite as solid lubricant, 

zircon as abrasive, vermiculite and baryte as functional and space fillers, and cardanol based 

benzoxazine toughened phenolic resin as binder. To isolate the flax fibers, chemical and physical 

methods including drying, room temperature alkaline solution, and acid steam treatment were 

performed and fibers with micro-fibrillated structure on the surface were formed. A new 

cardanol based benzoxazine synthesized by the reactions among cardanol, aniline, and 

formaldehyde was used as toughening for phenolic resin. The effects of both the content of 

treated flax fibers and friction temperature on friction performance, friction coefficient and 

specific wear rate, of the friction composites were evaluated by the extension evaluation method.  
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INTRODUCTION 

 

The organic brake friction composites are typically composed of multiple ingredients 

including fiber reinforcements, abrasives, lubricants, space and functional fillers, and phenolic 

binders [1,2]. Most popularly used reinforcements are steel wool, aramid pulp, and ceramic 

fibers, abrasives are alumina, zircon, and silicon carbide, lubricants are graphite and metal 

sulfides, functional and space fillers are vermiculite, cordierite, mica, potassium titanate, calcium 

sulfate, and baryte. The first generation of modern brake friction composites was asbestos 

reinforced composites. Due to the environmental problem connected to asbestos fibers [3], the 

asbestos containing friction composites were replaced by the semi-metallic [4] and non-asbestos 

organic (NAO) composites [5]. As the new types of NAO composites, both ceramic [6] and eco-

friendly phenolic bounded composites [7] with more comfortable properties were developed 

recently to solve the environmental problems caused by the toxicity and the small size wear 

debris containing copper and brass, metal sulfides, whiskers and nano-particles, and those to be 

harmful to water resources, atmosphere, soil, and human body [8, 9]. In order to partly address 

the problems mentioned above, natural plant fibers, whose character predetermine them to be 

eco-friendly material, have been added into brake friction composites [10-13].  

For the strategic development of eco-friendly brake friction composites, we have considered 

following important issues: (1) screening of new raw materials from renewable natural fibers, 

non-toxic mineral fibers and powders, plant powders (nut shells), and bio-mineral powders 

(seashells), particularly, the thermal stability of natural fibers and nut shells must be enhanced to 

reach as possible the level of phenolic binder; (2) design of the eco-friendly friction composites 

containing multiple components including abrasives, lubricants, reinforcement fibers, noise 

reduction agents, and low cost space fillers; (3) optimization of the composition of friction 

composites reinforced by natural fibers to meet the requirements of automotive brake linings; 

and (4) study of the friction mechanisms related to eco-friendly friction composites.  

In this paper, chemical and physical treated flax fibers were used in developing eco-friendly 

brake friction composites. The main purpose of utilizing natural plant fibers is to replace aramid 

pulp in NAO or steel wool in semi-metallic friction composites. Cardanol based benzoxazine 

was synthesized from cardanol, a product from natural resource, aniline, and formaldehyde [14] 

using as toughening for phenolic resin. Benzexazine is an open-ring polymerized phenolic resin 

and it has been used as binder to replace phenolic resin in brake friction materials [15,16]. The 

synthesis and curing reactions of cardanol based benzoxazine are shown in Figures 1a and 1b, 
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respectively [14]. Due to the long flexible methylene side chain in the cardanol based 

benzoxazine, it can be used as toughing for phenolic resin. Also the cardanol based benzoxazine 

can be co-cured with phenolic resin and the possible reaction mechanism is shown in Figure 1c 

[14]. 

All ingredients in the formulations designed, except the phenolic resin, are eco-friendly and 

non-toxic raw materials. The friction performance of the composites was tested by a drag type 

friction tester and the friction performance was evaluated by an extension evaluation method 

[13,17]. 

 

EXPERIMENTAL 

 

Chemical and Physical Treatments of Flax Fibers 

 

Flax fibers as received (Figure 2a) were treated by drying at 80 C for 30 min, 12% NaOH 

solution at room temperature for 1 h, and 1M HCl steam for 30 min [18].  

 

Raw Materials Used and Formulations Designed 

 

All raw materials used were selected according to their biodegradable and non-toxic 

properties as well as from natural resources, except the phenolic binder because phenolic resin is 

not a biodegradable binder. They are treated flax fibers (Figure 2d) as organic reinforcement, 

basalt fibers (Figure 3a) and wollastonite with needle shape (Figure 3b) as inorganic 

reinforcements, zircon (Figure 3c) as abrasive, vermiculite (Figure 3d) as noise reduction agent, 

natural graphite (Figure 3e) as lubricant, baryte as space filler (Figure 3f), cardanol based 

benzoxazine as toughening for phenolic resin, and phenolic resin as binder.  

The formulations of the eco-friendly composites designed are shown in Table 1. The 

formulations consist of three groups of materials. The first group is phenolic resin and carbanol 

based benzoxazine and their volume fraction is kept constant. The second group is represented 

by flax fibers and its volume fraction is increased from 0 to 23.6 vol.%, and the third group is 

composed of all the remaining materials and their volume fraction is decreased proportionally. 

 

Preparation of Eco-friendly Friction Composites 

 

DSpace VŠB-TUO http://hdl.handle.net/10084/94936 31/07/2012



Cardanol based benzoxazine is a viscous matter. It was mixed using agate mortar with 

barite, zircon, graphite, and vermiculite to form particulates. Resulting particulates were mixed 

with rest of raw materials in an electric blender (Electrolux EBR-100) for 2 min. The mixture 

was molded for 6 min at 165 °C under 25 MPa by a hot press (Wanda JFY-60). Post-curing of 

prepared friction composites was implemented in an oven at 170 °C for 3 h. Then the composites 

were cut to give the test samples with dimension of 25 mm × 25 mm × 6 mm. 

  

Measurements of Friction Performance 

 

Friction tests were performed using a drag type of friction tester (Wanda JF151) with 

constant speed of 7.6 m/s and applied normal pressure of 0.98 MPa. The disc is made of the grey 

cast iron. Friction coefficient during heating process and volume wear rate of the tested samples 

at 100, 200, 250, 300, and 350 C, respectively, and friction coefficient during cooling process at 

300, 250, 200, 150, and 100 C, respectively, were measured according to Chinese National 

Standard GB 5763-2008. In total, 11 friction coefficient data and 6 wear rate data for each 

sample were obtained.  

 

Morphology of Raw Materials 

 

The morphology of chemical and physical treated flax fibers, vermiculite, and natural 

graphite was observed by Hitachi S-4700 scanning electron microscopy (SEM). The morphology 

of basalt fibers, wollastonite, zircon, and baryte was observed by Philips SEM equipped with 

energy dispersive X-ray microanalysis (EDX) and the SEM images were obtained using back 

scattered electrons at operating current 25 kV. 

 

RESULTS AND DISCUSSION 

 

Morphology of Treated Flax Fibers 

 

The morphology of treated flax fibers was observed by SEM, as shown in Figures 2b-d. 

After treatments, the micro-fibrils composed of cellulose from flax fibers were obtained and the 

hemicelluloses and lignin appeared on the surface of flax fibers were cleaned off.  
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Friction Performance 

 

The effects of both flax fibers content and temperature on the friction coefficient during 

both heating and cooling processes during friction tests are shown in Figures 4a and 4b, 

respectively, and it is evident that the relationships among friction coefficient, composition, and 

temperature are non-linear. The friction sample without flax fibers shows slightly higher friction 

coefficient than the samples containing flax fibers at lower temperature. By the addition of flax 

fibers to the composites, the friction coefficient is depressed with the amount of flax fibers 

increased.  Therefore, the amount of flax fibers has to be optimized. The effect of temperature on 

friction coefficient indicates that the fade phenomenon appears at higher temperature and higher 

content of flax fibers (F-14.6 and F-23.6). Therefore, the optimal amount of flax fibers led to the 

stable and suitable friction coefficient, which are one of the most important demands for friction 

composites designed for automotive brake linings. 

The effects of flax fibers content and temperature on the wear rate of the composites are 

shown in Figure 5. It shows also non-linear relationships among the wear rate, composition, and 

temperature. From the Figure 5, it is evident that at higher temperature, the wear resistance of 

friction samples containing flax fibers was enhanced significantly due to ductile fracture and 

char formation of the natural fibers at elevated temperature. 

 

Extension Evaluation 

 

In order to evaluate the non-linear relationships between friction performance and 

compositions of the friction composites, extension evaluation method [13,17] based on Extenics 

theory [19] was developed. The procedures of the extension evaluation are as follows.  

Assuming there is a interval ,X a b  and a point M X , the dependent degree function of 

any point ,x with regard to the interval X  and the point M  is defined by equation (1). 

 
,  

( )

,  

x a
x M

M a
K x

b x
x M

b M

      (1) 

For friction coefficient ( ), let 
2

a b
M  (the middle point of interval X  meaning the best 

friction coefficient is near the middle value shown in Table 2, which is from the testing standard 
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of brake linings for automobiles (GB 5763-2008, China), the dependent degree function is 

changed into equation (2).  
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For each temperature (heating and cooling), a dependent degree ( )iK x  was calculated. And 

each of eleven measured friction coefficient has equal importance to this evaluation, with a same 

weight ( i) described by equation (3). The weighted average dependent degree (equation 3), 

( )K x , can be used to compare and rank different samples. The higher the value of the ( )K x  is, 

the better friction stability is. 

11

1 2 11

1

1
( ) ( ) ,

11
i i

i

K K                                      (3) 

 

Equations (2) and (3) can be then applied to describe the correlation between the measured 

friction coefficient at different temperature (Figure 4) and the middle points of the interval 

adopted based on GB 5763-2008. The dependent degree results calculated are shown in Figure 6 

and the rank of good friction stability is F-5.6, F-9, F-14.6, F-23.6, F-0 (Table 3).                                                                                  

For wear rate ( ): let M = a = 0 (the left ending point of interval X  meaning the best wear 

rate is 0), the dependent degree function is changed to equation (4). 

 

,  

( )  1,           

,  
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The weight for wear rate ( j) is equal (equation 5) and the weighted average dependent 

degree (equation 5), ( )K x , can be utilized to evaluate the wear rate of the composites (Figure 5). 

The greater the ( )K x  is, the better wear resistance is. The dependent degree results are shown in 

Figure 6 and the rank of good wear resistance is F-14.6, F-23.6, F-5.6, F-0, F-9 (Table 3).  

                                                 
6

1 2 6

1

1
( ) ( ) ,  

6
j j

j

K K                                    (5) 

To assess the friction coefficient and wear rate comprehensively with equal weight (wi), the 

extension evaluation was performed according to equation (6) and the results are shown in Table 

2. The parameters i=1-6 are dependent degree of friction coefficient measured during heating 

process, i=7-11 are dependent degree of friction coefficient measured during cooling process, 
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and i=12-17 are dependent degree of wear rate. The greater the ( )K x  is, the better comprehensive 

friction performance is. The best value of the dependent degree is 1 and the worst value is 0. 

Therefore, the five samples ranked from best to worst are F-5.6, F-9, F-14.6, F-23.6, F-0. It 

means that the optimal formulation is F-5.6. 

                                            
17

1 2 17

1

1
( ) ( ) ,  

17
i i

i

K x w K x w w w                                        (6) 

 

CONCLUSIONS 

 

A new type of eco-friendly brake friction composites containing flax fibers was developed 

and the ranking of the prepared samples based on their friction-wear performance was carried by 

extension evaluation method. The friction samples are composed of natural plant fibers (flax), 

mineral fibers (basalt and wollastonite), mineral fillers (natural graphite, zircon, vermiculite, and 

baryte), and cardanol based benzoxazine toughened phenolic resin. Flax fibers were treated by 

chemical and physical methods and the micro-fibrils were obtained. The effects of flax fibers 

content and temperature on friction performance were evaluated. Based on the results obtained 

using extension evaluation method, the optimized amount of flax fibers in the composites is 5.6 

vol.% (F-5.6). The role of flax fibers in the composites is to stabilize the friction coefficient and 

to improve the wear rate at high temperature. 
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Table captions 

Table 1. Eco-friendly friction formulations designed (volume fraction). 

Table 2. Allowed values of friction performance (GB 5763-1998). 

Table 3. Ranks of friction performance by extension evaluation method. 

 

Table 1. Eco-friendly friction formulations designed (volume fraction). 

 F-0 F-5.6 F-9 F-14.6 F-23.6 

Wollastonite 0.326 0.303 0.289 0.266 0.230 

Basalt fibers 0.090 0.084 0.080 0.074 0.063 

Zircon 0.090 0.084 0.080 0.074 0.063 

Baryte 0.146 0.136 0.130 0.119 0.103 

Vermiculite 0.056 0.052 0.050 0.046 0.039 

Natural graphite 0.090 0.084 0.080 0.074 0.063 

Phenolic 0.146 0.146 0.146 0.146 0.146 

Cardanol based benzoxazine 0.056 0.056 0.056 0.056 0.056 

Flax fibers 0 0.056 0.090 0.146 0.236 

 

 

Table 2. Allowed values of friction performance (GB 5763-1998). 

 100 C 150 C 200 C 250 C 300 C 350 C 

μ
 

0.25-0.65 0.25-0.70 0.25-0.70 0.25-0.70 0.25-0.70 0.20-0.70 

V, ×10
-7

cm
3
• (Nm)

-1
 ≤0.50 ≤0.70 ≤1.00 ≤1.50 ≤2.50 ≤3.50 

 

 

Table 3. Ranks of friction performance by extension evaluation method. 

Parameters     F-0 F-5.6 F-9 F-14.6 F-23.6 

( )K x  0.692 0.898 0.880 0.729 0.710 

Rank ( ) 5 1 2 3 4 

( )K x  0.636 0.660 0.576 0.779 0.677 

Rank ( ) 4 3 5 1 2 

( )K x  0.672 0.814 0.773 0.747 0.698 

Rank (  & ) 5 1 2 3 4 

 

 

DSpace VŠB-TUO http://hdl.handle.net/10084/94936 31/07/2012



Figure Captions 

Figure 1. Synthesis (a), curing (b) of cardanol based benzoxazine and co-curing reaction between 

cardanol based benzoxazine and phenolic resin (c) [14]. 

Figure 2. Morphology of flax fibers (a) photograph as received sample, SEM images after (b) 

drying, (c) room temperature alkaline, and (d) acid steam treatment. 

Figure 3. SEM and EDX images of raw materials used: (a) basalt fibers, (b) wollastonite, (c) 

zircon, (d) baryte, and (e) natural graphite. 

Figure 4. Effects of flax fibers content and temperature on friction coefficient measured (a) 

during heating process and (b) during cooling process. 

Figure 5. Effects of flax fibers content and temperature on wear rate. 

Figure 6. Dependent degree calculated for the five composites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DSpace VŠB-TUO http://hdl.handle.net/10084/94936 31/07/2012



 

(a) 

 

(b) 

 

(c) 

Figure 1. Synthesis (a), curing (b) of cardanol based benzoxazine and co-curing reaction between 

cardanol based benzoxazine and phenolic resin (c) [14]. 
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(a)                                                         (b) 

  

(c) 

 

   (d) 

Figure 2. Morphology of flax fibers (a) photograph as received sample, SEM images after (b) 

drying, (c) room temperature alkaline, and (d) acid steam treatment. 
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(b) 

 

 

(c) 
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 (d) 

 

(e) 

 

 

(f) 

Figure 3. SEM and EDX images of raw materials used: (a) basalt fibers, (b) wollastonite, (c) 

zircon, (d) vermiculite, (e) natural graphite, and (f) baryte. 

. 
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(a) 

 
(b) 

Figure 4. Effects of flax fibers content and temperature on friction coefficient measured (a) 

during heating process and (b) during cooling process. 
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Figure 5. Effects of flax fibers content and temperature on wear rate. 

 

 

 
Figure 6. Dependent degree calculated for the five composites. 
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