10,965 research outputs found

    Dirac versus Reduced Quantization of the Poincar\'{e} Symmetry in Scalar Electrodynamics

    Full text link
    The generators of the Poincar\'{e} symmetry of scalar electrodynamics are quantized in the functional Schr\"{o}dinger representation. We show that the factor ordering which corresponds to (minimal) Dirac quantization preserves the Poincar\'{e} algebra, but (minimal) reduced quantization does not. In the latter, there is a van Hove anomaly in the boost-boost commutator, which we evaluate explicitly to lowest order in a heat kernel expansion using zeta function regularization. We illuminate the crucial role played by the gauge orbit volume element in the analysis. Our results demonstrate that preservation of extra symmetries at the quantum level is sometimes a useful criterion to select between inequivalent, but nevertheless self-consistent, quantization schemes.Comment: 24 page

    Quasistationary binary inspiral. I. Einstein equations for the two Killing vector spacetime

    Get PDF
    The geometry of two infinitely long lines of mass moving in a fixed circular orbit is considered as a toy model for the inspiral of a binary system of compact objects due to gravitational radiation. The two Killing fields in the toy model are used, according to a formalism introduced by Geroch, to describe the geometry entirely in terms of a set of tensor fields on the two-manifold of Killing vector orbits. Geroch's derivation of the Einstein equations in this formalism is streamlined and generalized. The explicit Einstein equations for the toy model spacetime are derived in terms of the degrees of freedom which remain after a particular choice of gauge.Comment: 37 pages, REVTeX, one PostScript Figure included with epsfig; minor formatting changes and copyright notice added for journal publicatio

    TDP-43 regulates drosophila neuromuscular junctions growth by modulating futsch/MAP1B levels and synaptic microtubules organization

    Get PDF
    TDP-43 is an evolutionarily conserved RNA binding protein recently associated with the pathogenesis of different neurological diseases. At the moment, neither its physiological role in vivo nor the mechanisms that may lead to neurodegeneration are well known. Previously, we have shown that TDP-43 mutant flies presented locomotive alterations and structural defects at the neuromuscular junctions. We have now investigated the functional mechanism leading to these phenotypes by screening several factors known to be important for synaptic growth or bouton formation. As a result we found that alterations in the organization of synaptic microtubules correlate with reduced protein levels in the microtubule associated protein futsch/MAP1B. Moreover, we observed that TDP-43 physically interacts with futsch mRNA and that its RNA binding capacity is required to prevent futsch down regulation and synaptic defects. © 2011 Godena et al

    Complete positivity and entangled degrees of freedom

    Full text link
    We study how some recently proposed noncontextuality tests based on quantum interferometry are affected if the test particles propagate as open systems in presence of a gaussian stochastic background. We show that physical consistency requires the resulting markovian dissipative time-evolution to be completely positive.Comment: 23 pages, plain-TeX, no figure

    Suzaku Observations of Four Heavily Absorbed HMXBs

    Full text link
    We report on Suzaku observations of four unidentified sources from the INTEGRAL and Swift BAT Galactic plane surveys. All the sources have a large neutral hydrogen column density and are likely members of an emerging class of heavily absorbed high mass X-ray binary (HMXB) first identified in INTEGRAL observations. Two of the sources in our sample are approximately constant flux sources, one source shows periodic variation and one source exhibited a short, bright X-ray outburst. The periodicity is transient, suggesting it is produced by a neutron star in an elliptical orbit around a stellar wind source. We analyze the flaring source in several segments to look for spectral variation and discuss the implications of the findings for the nature of the source. We conclude that all four sources in our sample can be identified with the emerging class of highly absorbed HMXBs, that one is a newly identified transient X-ray pulsar and that at least one is a newly identified supergiant fast X-ray transient (SFXT).Comment: 22 pages, 5 figures, submitted to Ap

    The mass surface density in the local disk and the chemical evolution of the Galaxy

    Full text link
    We have studied the effect of adopting different values of the total baryonic mass surface density in the local disk at the present time in a model for the chemical evolution of the Galaxy. We have compared our model results with the G-dwarf metallicity distribution, the amounts of gas, stars, stellar remnants, infall rate and SN rate in the solar vicinity, and with the radial abundance gradients and gas distribution in the disk. This comparison strongly suggests that the value of the total baryonic mass surface density in the local disk which best fits the observational properties should lie in the range 50-75 Msun pc-2, and that values outside this range should be ruled out.Comment: 6 pages, LaTeX, 3 figures, accepted for publication in the Astrophysical Journal, uses emulateapj.st

    Interaction anisotropy and random impurities effects on the critical behaviour of ferromagnets

    Full text link
    The theory of phase transitions is based on the consideration of "idealized" models, such as the Ising model: a system of magnetic moments living on a cubic lattice and having only two accessible states. For simplicity the interaction is supposed to be restricted to nearest--neighbour sites only. For these models, statistical physics gives a detailed description of the behaviour of various thermodynamic quantities in the vicinity of the transition temperature. These findings are confirmed by the most precise experiments. On the other hand, there exist other cases, where one must account for additional features, such as anisotropy, defects, dilution or any effect that may affect the nature and/or the range of the interaction. These features may have impact on the order of the phase transition in the ideal model or smear it out. Here we address two classes of models where the nature of the transition is altered by the presence of anisotropy or dilution.Comment: 11 pages, 4 figures, To appear in Journal of Physics: Conference Serie
    corecore