17,449 research outputs found

    Interacting topological phases in multiband nanowires

    Full text link
    We show that semiconductor nanowires coupled to an s-wave superconductor provide a playground to study effects of interactions between different topological superconducting phases supporting Majorana zero-energy modes. We consider quasi-one dimensional system where the topological phases emerge from different transverse subbands in the nanowire. In a certain parameter space, we show that there is a multicritical point in the phase diagram where the low-energy theory is equivalent to the one describing two coupled Majorana chains. We study effect of interactions as well as symmetry-breaking perturbations on the topological phase diagram in the vicinity of this multicritical point. Our results shed light on the stability of the topological phase around the multicritical point and have important implications for the experiments on Majorana nanowires.Comment: 8 pages, 2 figures; final version to appear in PR

    The Matrix Product Approach to Quantum Spin Ladders

    Get PDF
    We present a manifestly rotational invariant formulation of the matrix product method valid for spin chains and ladders. We apply it to 2 legged spin ladders with spins 1/2, 1 and 3/2 and different magnetic structures labelled by the exchange coupling constants, which can be ferromagnetic or antiferromagnetic along the legs and the rungs of the ladder We compute ground state energy densities, correlation lengths and string order parameters. We present numerical evidence of the duality properties of the 3 different non ferromagnetic spin 1/2 ladders. We show that the long range topological order characteristic of isolated spin 1 chains is broken by the interchain coupling. The string order correlation function decays exponentially with a finite correlation length that we compute. A physical picture of the spin 1 ladder is given in terms of a collection of resonating spin 1 chains. Finally for ladders with spin equal or greater than 3/2 we define a class of AKLT states whose matrix product coefficients are given by 9-j symbols.Comment: REVTEX file, 16 pages, 12 figures, 6 Table

    Adsorption desorption processes on mesoscopic pores conected to microscopic pores of complex geometry using the Ising model

    Full text link
    In this work we report studies of nitrogen adsorption and desorption onto solid surfaces using computer simulations of the three dimensional Ising model, for systems with complex porous structures at the mesoscopic and microscopic levels. A hysteresis cycle between the adsorption and desorption processes appears and we find that its characteristics are dependent on the geometry of the pore and on the strength of the surface fluid interaction. We obtained also an average adsorption isotherm, which represents a combination of differently shaped pores, and shows robust jumps at certain values of the chemical potential as a consequence of the structures of the pores. Lastly, we compare our results with experimental data and also report the filling process of microscopic pores connected with mesopores. It is argued that these predictions are useful for researchers working on the enhanced recovery of oil and for the design of new nanomaterials, among others

    Managerial Organization of U.S. Farms: Importance for Classifying Farms and Evaluating the Distribution of Farm Payments

    Get PDF
    A new typology of U.S. farms is constructed focusing on the managerial organization of farms. Single operator farms are distinguished from those with multiple operators which are divided into four classes: (single generation farms with 1) operators of the same sex, 2) operators of opposite sex, and multiple generation farms with 3) an elder primary operator, and 4) an younger primary operator). The utility of this classification scheme for understanding farm structure is analyzed and findings show that the managerial organization represents an important classification for understanding the distribution of farm payments.Farm Household, Government Policy, Agricultural and Food Policy,

    The many levels pairing Hamiltonian for two pairs

    Full text link
    We address the problem of two pairs of fermions living on an arbitrary number of single particle levels of a potential well (mean field) and interacting through a pairing force. The associated solutions of the Richardson's equations are classified in terms of a number vlv_l, which reduces to the seniority vv in the limit of large values of the pairing strength GG and yields the number of pairs not developing a collective behaviour, their energy remaining finite in the GG\to\infty limit. We express analytically, through the moments of the single particle levels distribution, the collective mode energy and the two critical values Gcr+G_{\rm cr}^{+} and GcrG_{\rm cr}^{-} of the coupling which can exist on a single particle level with no pair degeneracy. Notably Gcr+G_{\rm cr}^{+} and GcrG_{\rm cr}^{-} merge when the number of single particle levels goes to infinity, where they coincide with the GcrG_{\rm cr} (when it exists) of a one pair system, not envisioned by the Richardson theory. In correspondence of GcrG_{\rm cr} the system undergoes a transition from a mean field to a pairing dominated regime. We finally explore the behaviour of the excitation energies, wave functions and pair transfer amplitudes finding out that the former, for G>GcrG>G_{\rm cr}^{-}, come close to the BCS predictions, whereas the latter display a divergence at GcrG_{\rm cr}, signaling the onset of a long range off-diagonal order in the system.Comment: 35 pages, 6 figures, 2 tables, to be published in EPJ

    Entry into Winner-Take-All and Proportional-Prize Contests: An Experimental Study

    Get PDF
    This experiment compares the performance of two contest designs: a standard winnertake- all tournament with a single fixed prize, and a novel proportional-payment design in which that same prize is divided among contestants by their share of total achievement. We find that proportional prizes elicit more entry and more total achievement than the winner-take-all tournament. The proportional-prize contest performs better by limiting the degree to which heterogeneity among contestants discourages weaker entrants, without altering the performance of stronger entrants. These findings could inform the design of contests for technological and other improvements, which are widely used by governments and philanthropic donors to elicit more effort on targeted economic and technological development activities.performance pay, tournament, piece rate, tournament design, contest, experiments, risk aversion, feedback, gender
    corecore