277 research outputs found

    Novel Supersymmetric SO(10) Seesaw Mechanism

    Get PDF
    We propose a new seesaw mechanism for neutrino masses within a class of supersymmetric SO(10) models with broken D-parity. It is shown that in such scenarios the B-L scale can be as low as TeV without generating inconsistencies with gauge coupling unification nor with the required magnitude of the light neutrino masses. This leads to a possibly light new neutral gauge boson as well as relatively light quasi-Dirac heavy leptons. These particles could be at the TeV scale and mediate lepton flavour and CP violating processes at appreciable levels.Comment: 4 pages, 3 figures, revtex4, references added, typos corrected, sharper discussion of the RGEs give

    A_4-based neutrino masses with Majoron decaying dark matter

    Get PDF
    We propose an A_4 flavor-symmetric SU(3)xSU(2)xU(1) seesaw model where lepton number is broken spontaneously. A consistent two-zero texture pattern of neutrino masses and mixing emerges from the interplay of type-I and type-II seesaw contributions, with important phenomenological predictions. We show that, if the Majoron becomes massive, such seesaw scenario provides a viable candidate for decaying dark matter, consistent with cosmic microwave background lifetime constraints that follow from current WMAP observations. We also calculate the sub-leading one-loop-induced decay into photons which leads to a mono-energetic emission line that may be observed in future X-ray missions such as Xenia.Comment: 16 pages, 6 eps figures. Minor corrections. To appear in Phys. Rev.

    Fermion masses, leptogenesis and supersymmetric SO (10) unification

    Get PDF
    Current neutrino oscillation data indicate the existence of two large lepton mixing angles, while Kobayashi-Maskawa matrix elements are all small. Here we show how supersymmetric SO(10) with extra chiral singlets can easily reconcile large lepton mixing angles with small quark mixing angles within the framework of the successful Fritzsch ansatz. Moreover, we show how this is fully consistent with the thermal leptogenesis scenario, avoiding the so-called gravitino problem. A sizable asymmetry can be generated at scales as low as possible within the leptogenesis mechanism. We present our results in terms of the leptonic CP violation parameter that characterizes neutrino oscillations

    Charged lepton Flavor Violation in Supersymmetry with Bilinear R-Parity Violation

    Get PDF
    The simplest unified extension of the Minimal Supersymmetric Standard Model with bi-linear R-parity violation naturally predicts a hierarchical neutrino mass spectrum, suitable to explain atmospheric and solar neutrino fluxes. We study whether the individual violation of the lepton numbers L_{e,mu,tau} in the charged sector can lead to measurable rates for BR(mu->e gamma)and $BR(tau-> mu gamma). We find that some of the R-parity violating terms that are compatible with the observed atmospheric neutrino oscillations could lead to rates for mu->e gamma measurable in projected experiments. However, the Delta m^2_{12} obtained for those parameters is too high to be compatible with the solar neutrino data, excluding therefore the possibility of having measurable rates for mu->e gamma in the model.Comment: 29 pages, 8 figures. Constraint from solar neutrino data included, conclusions changed respect v

    On the curvature of vortex moduli spaces

    Get PDF
    We use algebraic topology to investigate local curvature properties of the moduli spaces of gauged vortices on a closed Riemann surface. After computing the homotopy type of the universal cover of the moduli spaces (which are symmetric powers of the surface), we prove that, for genus g>1, the holomorphic bisectional curvature of the vortex metrics cannot always be nonnegative in the multivortex case, and this property extends to all Kaehler metrics on certain symmetric powers. Our result rules out an established and natural conjecture on the geometry of the moduli spaces.Comment: 25 pages; final version, to appear in Math.

    Neutrino Masses and Mixings from Supersymmetry with Bilinear R--Parity Violation: A Theory for Solar and Atmospheric Neutrino Oscillations

    Get PDF
    The simplest unified extension of the MSSM with bi-linear R--Parity violation naturally predicts a hierarchical neutrino mass spectrum, in which one neutrino acquires mass by mixing with neutralinos, while the other two get mass radiatively. We have performed a full one-loop calculation of the neutralino-neutrino mass matrix in the bi-linear \rp MSSM, taking special care to achieve a manifestly gauge invariant calculation. Moreover we have performed the renormalization of the heaviest neutrino, needed in order to get meaningful results. The atmospheric mass scale and maximal mixing angle arise from tree-level physics, while solar neutrino scale and oscillations follow from calculable one-loop corrections. If universal supergravity assumptions are made on the soft-supersymmetry breaking terms then the atmospheric scale is calculable as a function of a single \rp violating parameter by the renormalization group evolution due to the non-zero bottom quark Yukawa coupling. The solar neutrino problem must be accounted for by the small mixing angle (SMA) MSW solution. If these assumptions are relaxed then one can implement large mixing angle solutions, either MSW or just-so. The theory predicts the lightest supersymmetic particle (LSP) decay to be observable at high-energy colliders, despite the smallness of neutrino masses indicated by experiment. This provides an independent way to test this solution of the atmospheric and solar neutrino anomalies.Comment: 46 pages, references added + several misprints correcte

    Probing neutrino properties with charged scalar lepton decays

    Get PDF
    Supersymmetry with bilinear R-parity violation provides a predictive framework for neutrino masses and mixings in agreement with current neutrino oscillation data. The model leads to striking signals at future colliders through the R-parity violating decays of the lightest supersymmetric particle. Here we study charged scalar lepton decays and demonstrate that if the scalar tau is the LSP (i) it will decay within the detector, despite the smallness of the neutrino masses, (ii) the relative ratio of branching ratios Br({tilde tau}_1 --> e sum nu_i)/ Br({tilde tau}_1 --> mu sum nu_i) is predicted from the measured solar neutrino angle, and (iii) scalar muon and scalar electron decays will allow to test the consistency of the model. Thus, bilinear R-parity breaking SUSY will be testable at future colliders also in the case where the LSP is not the neutralino.Comment: 24 pages, 8 ps figs Report-no.: IFIC/02-33 and ZU-TH 11/0

    Spontaneous R-Parity violation bounds

    Get PDF
    We investigate bounds from tree-level and one-loop processes in generic supersymmetric models with spontaneous R-parity breaking in the superpotential. We analyse the bounds from a general point of view. The bounds are applicable both for all models with spontaneous R-parity violation and for explicit bilinear R-parity violation based on general lepton-chargino and neutrino-neutralino mixings. We find constraints from semileptonic B, D and K decays, leptonic decays of the mu and tau, electric dipole moments, as well as bounds for the anomalous magnetic moment of the muon.Comment: 22 page
    corecore