434 research outputs found

    NMR and conductivity studies of the mixed glass former effect in lithium borophosphate glasses

    Get PDF
    Alkali ion charge transport has been studied in a series of mixed glass former lithium borophosphate glasses of composition 0.33Li2O + 0.67[xB2O3 + (1 – x)P2O5]. The entire concentration range, 0.0 ≤ x ≤ 1.0, from pure glassy Li2P4O11 to pure glassy Li2B4O7 has been examined while keeping the molar fraction of Li2O constant. Electrical conductivity measurements and nuclear magnetic resonance techniques such as spin relaxometry, line shape analysis, and stimulated-echo spectroscopy were used to examine the temperature and frequency dependence of the Li+ ion motion over wide ranges of time scale and temperature. By accurately determining motional time scales and activation energies over the entire composition range the ion dynamics and the charge transport are found to be fastest if the borate and the phosphate fractions are similar. The nonlinear variation of the charge conduction, the most notable feature of the mixed glass former effect, is discussed in terms of the composition dependence of network former units which determine the local glass structure

    Dynamics of systems with isotropic competing interactions in an external field: a Langevin approach

    Full text link
    We study the Langevin dynamics of a ferromagnetic Ginzburg-Landau Hamiltonian with a competing long-range repulsive term in the presence of an external magnetic field. The model is analytically solved within the self consistent Hartree approximation for two different initial conditions: disordered or zero field cooled (ZFC), and fully magnetized or field cooled (FC). To test the predictions of the approximation we develop a suitable numerical scheme to ensure the isotropic nature of the interactions. Both the analytical approach and the numerical simulations of two-dimensional finite systems confirm a simple aging scenario at zero temperature and zero field. At zero temperature a critical field hch_c is found below which the initial conditions are relevant for the long time dynamics of the system. For h<hch < h_c a logarithmic growth of modulated domains is found in the numerical simulations but this behavior is not captured by the analytical approach which predicts a t1/2t^1/2 growth law at T=0T = 0

    TESS Discovery of a Transiting Super-Earth in the π\pi Mensae System

    Full text link
    We report the detection of a transiting planet around π\pi Mensae (HD 39091), using data from the Transiting Exoplanet Survey Satellite (TESS). The solar-type host star is unusually bright (V=5.7) and was already known to host a Jovian planet on a highly eccentric, 5.7-year orbit. The newly discovered planet has a size of 2.04±0.052.04\pm 0.05 RR_\oplus and an orbital period of 6.27 days. Radial-velocity data from the HARPS and AAT/UCLES archives also displays a 6.27-day periodicity, confirming the existence of the planet and leading to a mass determination of 4.82±0.854.82\pm 0.85 MM_\oplus. The star's proximity and brightness will facilitate further investigations, such as atmospheric spectroscopy, asteroseismology, the Rossiter--McLaughlin effect, astrometry, and direct imaging.Comment: Accepted for publication ApJ Letters. This letter makes use of the TESS Alert data, which is currently in a beta test phase. The discovery light curve is included in a table inside the arxiv submissio

    3C 273 with NuSTAR: Unveiling the Active Galactic Nucleus

    Get PDF
    We present results from a 244 ks NuSTAR observation of 3C 273 obtained during a cross-calibration campaign with the Chandra, INTEGRAL, Suzaku, Swift, and XMM-Newton observatories. We show that the spectrum, when fit with a power-law model using data from all observatories except INTEGRAL over the 1–78 keV band, leaves significant residuals in the NuSTAR data between 30 and 78 keV. The NuSTAR 3–78 keV spectrum is well described by an exponentially cutoff power law (Γ = 1.646 ± 0.006, E_(cutoff) = 202_(-34)^(+51) keV) with a weak reflection component from cold, dense material. There is also evidence for a weak (EW = 23 ± 11 eV) neutral iron line. We interpret these features as arising from coronal emission plus reflection off an accretion disk or distant material. Beyond 80 keV INTEGRAL data show clear excess flux relative to an extrapolation of the active galactic nucleus model fit to NuSTAR. This high-energy power law is consistent with the presence of a beamed jet, which begins to dominate over emission from the inner accretion flow at 30–40 keV. Modeling the jet locally (in the NuSTAR + INTEGRAL band) as a power law, we find that the coronal component is fit by Γ_(AGN) = 1.638 ± 0.045, E_(cutoff) = 47 ± 15 keV, and jet photon index by Γ_(jet) = 1.05 ± 0.4. We also consider Fermi/LAT observations of 3C 273, and here the broadband spectrum of the jet can be described by a log-parabolic model, peaking at ~2 MeV. Finally, we investigate the spectral variability in the NuSTAR band and find an inverse correlation between flux and Γ

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation
    corecore