22 research outputs found

    Perinatal asphyxia: CNS development and deficits with delayed onset

    Get PDF
    Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. The primary insult relates to the duration of the period lacking oxygenation, leading to death if not re-established. Re-oxygenation leads to a secondary insult, related to a cascade of biochemical events required for restoring proper function. Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated to mental and neurological diseases with delayed clinical onset, by mechanisms not yet clarified. In the experimental scenario, the effects observed long after perinatal asphyxia have been explained by over expression of sentinel proteins, such as poly(ADP-ribose) polymerase-1 (PARP-1), competing for NAD+ during re-oxygenation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. Asphyxia induces transcriptional activation of proinflammatory factors, in tandem with PARP-1 overactivation, and pharmacologically induced PARP-1 inhibition also down-regulates the expression of proinflammatory cytokines. Nicotinamide has been proposed as a suitable PARP-1 inhibitor. Its effect has been studied in an experimental model of global hypoxia in rats. In that model, the insult is induced by immersing rat foetuses into a water bath for various periods of time. Following asphyxia, the pups are delivered, treated, and nursed by surrogate dams, pending further experiments. Nicotinamide rapidly distributes into the brain following systemic administration, reaching steady state concentrations sufficient to inhibit PARP-1 activity for several hours, preventing several of the long-term consequences of perinatal asphyxia, supporting the idea that it constitutes a lead for exploring compounds with similar or better pharmacological profiles

    Vinculando la investigación científica con la formación de pregrado en carreras de la salud

    No full text

    Characterization of integral input-to-state stability for nonlinear time-varying systems of infinite dimension

    Full text link
    For large classes of infinite-dimensional time-varying control systems, the equivalence between integral input-to-state stability (iISS) and the combination of global uniform asymptotic stability under zero input (0-GUAS) and uniformly bounded-energy input/bounded state (UBEBS) is established under a reasonable assumption of continuity of the trajectories with respect to the input, at the zero input. By particularizing to specific instances of infinite-dimensional systems, such as time-delay, or semilinear over Banach spaces, sufficient conditions are given in terms of the functions defining the dynamics. In addition, it is also shown that for semilinear systems whose nonlinear term satisfies an affine-in-the-state norm bound, it holds that iISS becomes equivalent to just 0-GUAS, a fact known to hold for bilinear systems. An additional important aspect is that the iISS notion considered is more general than the standard one.Comment: Submitted to SIAM J Control and Optimizatio

    Synthesis and properties of highly processable asymmetric polyimides with bulky phenoxy groups

    No full text
    A series of new aromatic polyimides (PIs) and co-PIs containing bulky tert-butyl phenoxy group was synthesized by one-step high-temperature polycondensation of 1,3-diamino-4-(4′-tert-butylphenoxy)benzene (tBuPDAB) with different commercially available aromatic dianhydrides. The polymers were obtained in quantitative yields with inherent viscosities of 0.40–0.70 dL g. They exhibited high thermal stability with 10% weight loss above 480°C and were cast in films with good mechanical properties capable to be tested as gas separation membranes. These PIs were compared with analogs bearing phenoxy group (PDAB). The incorporation of tBu improved the solubility of the PIs, their free volume fraction, d-spacing, and gas permeability coefficients in comparison with their analogs obtained from PDAB. The permeability enhancement was from 2.5 to 8 times depended on the gas tested. The PI, based on tBuPDAB and 4,4’-(hexafluoroisopropylidene)diphtalic anhydride and, thus, containing two different bulky pendant groups, showed the highest gas permeability coefficient for CO (58.3 Barrer) and moderate ideal selectivity to the gas pair CO/CH (α = 18.0)

    Further studies on the hypothesis of PARP-1 inhibition as a strategy for lessening the long-term effects produced by perinatal asphyxia: Effects of nicotinamide and theophylline on PARP-1 activity in brain and peripheral tissue

    No full text
    Oxygen interruption leads to death when reoxygenation is not promptly re-established. Re-oxygenation triggers a cascade of biochemical events for restoring function at the cost of improper homeostasis. The effects observed long after perinatal asphyxia (PA) have been explained by over-expression of sentinel proteins, such as poly(ADP-ribose) polymerase-1 (PARP-1), competing for NAD+ during re-oxygenation, leading to the idea that sentinel protein inhibition constitutes a therapeutic strategy. We studied the effects of nicotinamide and theophylline on PARP-1 activity assayed in brain and peripheral (heart) rat tissue 1-24 h after birth, as well as on changes in behaviour and monoamine neurotransmission in adult rats. PA was induced by immersing rat foetuses into a water bath for 0 or 21 min. After resuscitation, the pups were treated with nicotinamide (0.8 mmol/kg, i.p.), theophylline (0.14 mmol/kg, i.p.) or saline (0.9% NaCl) and nurtured by surrogate dams, pending behavioural and mic

    Comparative Pan-Genome Analysis of Piscirickettsia salmonis Reveals Genomic Divergences within Genogroups

    No full text
    Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis, functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these genes could be directly associated with inter-genogroup differences in pathogenesis and host-pathogen interactions, information that could be useful in designing novel strategies for diagnosing and controlling P. salmonis infection

    Fast isolation of sub-nanomolar affinity alpaca nanobody against the Spike RBD of SARS-CoV-2 by combining bacterial display and a simple single-step density gradient selection

    No full text
    Despite the worldwide efforts to avoid disease progression of COVID-19 into a severe acute respiratory syndrome and avoid its severe impact on health systems; the situation remains critical. Effective diagnosis, treatment, and prophylactic measures are required to meet the worldwide demand: recombinant antibodies such as alpaca Nanobodies fulfill these requirements. Here, we develop a fast track for nanobody isolation against the receptor-binding-domain (RBD) SARS-CoV-2 Spike protein following an optimized immunization, efficient construction of the VHH library for E. coli surface display, and single-step selection of high-affinity nanobodies using a simple density gradient centrifugation of the bacterial library. Following this procedure, we isolate and characterize an alpaca Nanobody against Spike RBD of SARS-CoV-2 in the sub-nanomolar range.N
    corecore