5,416 research outputs found

    Negative Pressures in QED Vacuum in an External Magnetic Field

    Full text link
    Our aim is to study the electron-positron vacuum pressures in presence of a strong magnetic field BB. To that end, we obtain a general energy-momentum tensor, depending on external parameters, which in the zero temperature and zero density limit leads to vacuum expressions which are approximation-independent. Anisotropic pressures arise, and in the tree approximation of the magnetic field case, the pressure along BB is positive, whereas perpendicular to BB it is negative. Due to the common axial symmetry, the formal analogy with the Casimir effect is discussed, for which in addition to the usual negative pressure perpendicular to the plates, there is a positive pressure along the plates. The formal correspondence between the Casimir and black body energy-momentum tensors is analyzed. The fermion hot vacuum behavior in a magnetic field is also briefly discussed

    Remark on charge conjugation in the non relativistic limit

    Full text link
    We study the non relativistic limit of the charge conjugation operation C\cal C in the context of the Dirac equation coupled to an electromagnetic field. The limit is well defined and, as in the relativistic case, C\cal C, P\cal P (parity) and T\cal T (time reversal) are the generators of a matrix group isomorphic to a semidirect sum of the dihedral group of eight elements and Z2\Z_2. The existence of the limit is supported by an argument based in quantum field theory. Also, and most important, the limit exists in the context of galilean relativity. Finally, if one complexifies the Lorentz group and therefore the galilean spacetime xμx_\mu, then the explicit form of the matrix for C\cal C allows to interpret it, in this context, as the complex conjugation of the spatial coordinates: xx\vec{x} \to \vec{x}^*. This result is natural in a fiber bundle description.Comment: 8 page

    Electric field of a pointlike charge in a strong magnetic field and ground state of a hydrogenlike atom

    Full text link
    In an external constant magnetic field, so strong that the electron Larmour length is much shorter than its Compton length, we consider the modification of the Coulomb potential of a point charge owing to the vacuum polarization. We establish a short-range component of the static interaction in the Larmour scale, expressed as a Yukawa-like law, and reveal the corresponding "photon mass" parameter. The electrostatic force regains its long-range character in the Compton scale: the tail of the potential follows an anisotropic Coulomb law, decreasing away from the charge slower along the magnetic field and faster across. In the infinite-magnetic-field limit the potential is confined to an infinitely thin string passing though the charge parallel to the external field. This is the first evidence for dimensional reduction in the photon sector of quantum electrodynamics. The one-dimensional form of the potential on the string is derived that includes a delta-function centered in the charge. The nonrelativistic ground-state energy of a hydrogenlike atom is found with its use and shown not to be infinite in the infinite-field limit, contrary to what was commonly accepted before, when the vacuum polarization had been ignored. These results may be useful for studying properties of matter at the surface of extremely magnetized neutron stars.Comment: 45 pages, 6 figures, accepted to Phys. Rev.

    Quantum dynamics, dissipation, and asymmetry effects in quantum dot arrays

    Full text link
    We study the role of dissipation and structural defects on the time evolution of quantum dot arrays with mobile charges under external driving fields. These structures, proposed as quantum dot cellular automata, exhibit interesting quantum dynamics which we describe in terms of equations of motion for the density matrix. Using an open system approach, we study the role of asymmetries and the microscopic electron-phonon interaction on the general dynamical behavior of the charge distribution (polarization) of such systems. We find that the system response to the driving field is improved at low temperatures (and/or weak phonon coupling), before deteriorating as temperature and asymmetry increase. In addition to the study of the time evolution of polarization, we explore the linear entropy of the system in order to gain further insights into the competition between coherent evolution and dissipative processes.Comment: 11pages,9 figures(eps), submitted to PR

    Size effects in the magnetic behaviour of TbAl_2 milled alloys

    Full text link
    The study of the magnetic properties depending upon mechanical milling of the ferromagnetic polycrystalline TbAl_2 material is reported. The Rietveld analysis of the X-ray diffraction data reveals a decrease of the grain size down to 14 nm and -0.15 % of variation of the lattice parameter, after 300 hours of milling time. Irreversibility in the zero field cooled - field cooled (ZFC-FC) DC-susceptibility and clear peaks in the AC susceptibility between 5 and 300 K show that the long-range ferromagnetic structure is inhibited in favour of a disordered spin arrangement below 45 K. This glassy behaviour is also deduced from the variation of the irreversibility transition with the field (H^{2/3}) and frequency. The magnetization process of the bulk TbAl_2 is governed by domain wall thermal activation processes. By contrast, in the milled samples, cluster-glass properties arise as a result of cooperative interactions due to the substitutional disorder. The interactions are also influenced by the nanograin structure of the milled alloys, showing a variation of coercivity with the grain size, below the crossover between the multi- and single-domain behaviours.Comment: 23 pages, 11 figures, to appear in J. Phys.: Condens. Ma

    Quantum Phase Transitions in Josephson Junction Chains

    Full text link
    We investigate the quantum phase transition in a one-dimensional chain of ultra-small superconducting grains, considering both the self- and junction capacitances. At zero temperature, the system is transformed into a two-dimensional system of classical vortices, where the junction capacitance introduces anisotropy in the interaction between vortices. This leads to the superconductor-insulator transition of the Berezinskii-Kosterlitz-Thouless type, as the ratios of the Josephson coupling energy to the charging energies are varied. It is found that the junction capacitance plays a role similar to that of dissipation and tends to suppress quantum fluctuations; nevertheless the insulator region survives even for arbitrarily large values of the junction capacitance.Comment: REVTeX+5 EPS figures, To appear in PRB Rapid

    HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Days Circular Orbit

    Full text link
    We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V=12.4) G-type (M_{\star}=1.131 ±\pm 0.030 M_{\odot}, R_{\star}=1.0910.046+0.070^{+0.070}_{-0.046} R_{\star}) metal-rich ([Fe/H]=+0.3 dex) host star in a circular orbit with a period of P=16.2546 days. HATS-17b has a very compact radius of 0.777 ±\pm 0.056 RJ_J given its Jupiter-like mass of 1.338 ±\pm 0.065 MJ_J. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17b will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet.Comment: 12 page, 8 figures, submitted to A

    CaB_6: a new semiconducting material for spin electronics

    Full text link
    Ferromagnetism was recently observed at unexpectedly high temperatures in La-doped CaB_6. The starting point of all theoretical proposals to explain this observation is a semimetallic electronic structure calculated for CaB_6 within the local density approximation. Here we report the results of parameter-free quasiparticle calculations of the single-particle excitation spectrum which show that CaB_6 is not a semimetal but a semiconductor with a band gap of 0.8 eV. Magnetism in La_xCa_{1-x}B_6 occurs just on the metallic side of a Mott transition in the La-induced impurity band.Comment: 4 pages, 1 postscript figur

    Mean Field Theory of Josephson Junction Arrays with Charge Frustration

    Full text link
    Using the path integral approach, we provide an explicit derivation of the equation for the phase boundary for quantum Josephson junction arrays with offset charges and non-diagonal capacitance matrix. For the model with nearest neighbor capacitance matrix and uniform offset charge q/2e=1/2q/2e=1/2, we determine, in the low critical temperature expansion, the most relevant contributions to the equation for the phase boundary. We explicitly construct the charge distributions on the lattice corresponding to the lowest energies. We find a reentrant behavior even with a short ranged interaction. A merit of the path integral approach is that it allows to provide an elegant derivation of the Ginzburg-Landau free energy for a general model with charge frustration and non-diagonal capacitance matrix. The partition function factorizes as a product of a topological term, depending only on a set of integers, and a non-topological one, which is explicitly evaluated.Comment: LaTex, 24 pages, 8 figure

    Reduction of the Yb valence in YbAl3 nanoparticles

    Get PDF
    Measurements of specific heat, dc magnetic susceptibility, and Yb LII and LIII x-ray absorption near-edge structure XANES and extended x-ray absorption fine structure EXAFS on YbAl3 milled alloys are reported. X-ray diffraction patterns are consistent with a reduction in particle size down to 10 nm and an increase in the lattice strain up to 0.4% for 120 h of milling time. A decrease in the mean valence from 2.86 for the unmilled alloy to 2.70 for 120 h milled YbAl3 is obtained from the analysis of XANES spectra. From the analysis of spectra in the EXAFS region, an increase in the mean-square disorder of neighbor distance with milling time is detected in good agreement with the results of x-ray diffraction. Size effects strongly influence the magnetic and thermal properties. The value for the maximum of the magnetic susceptibility decreases around 30% for 120 h milled alloy and an excess specific heat, with a peak around 40 K in the milled samples, is derived. These changes in the physical properties along the milled YbAl3 alloys are associated with the reduction in particle size. Such a reduction leads to the existence of a large number of Yb2+ atoms at the surface with respect to the bulk affecting the overall electronic state
    corecore