33,002 research outputs found

    Fast sampling control of a class of differential linear repetitive processes

    Get PDF
    Repetitive processes are a distinct class of 2D linear systems of practical and theoretical interest. Most of the available control theory for them is for the case of linear dynamics and focuses on systems theoretic properties such as stability and controllability/observability. This paper uses an extension of standard, or 1D, feedback control schemes to control a physically relevant sub-class of these processes

    Stability Tests for a Class of 2D Continuous-Discrete Linear Systems with Dynamic Boundary Conditions

    No full text
    Repetitive processes are a distinct class of 2D systems of both practical and theoretical interest. Their essential characteristic is repeated sweeps, termed passes, through a set of dynamics defined over a finite duration with explicit interaction between the outputs, or pass profiles, produced as the system evolves. Experience has shown that these processes cannot be studied/controlled by direct application of existing theory (in all but a few very restrictive special cases). This fact, and the growing list of applications areas, has prompted an on-going research programme into the development of a 'mature' systems theory for these processes for onward translation into reliable generally applicable controller design algorithms. This paper develops stability tests for a sub-class of so-called differential linear repetitive processes in the presence of a general set of initial conditions, where it is known that the structure of these conditions is critical to their stability properties

    On controllability and control laws for discrete linear repetitive processes

    No full text
    Repetitive processes are a distinct class of 2D systems (i.e. information propagation in two independent directions) of both systems theoretic and applications interest. They cannot be controlled by the direct extension of existing techniques from either standard (termed 1D here) or 2D systems theory. This article develops significant new results on the relationships between one physically motivated concept of controllability for the so-called discrete linear repetitive processes and the structure and design of control laws, including the case when disturbances are present

    An investigation of the decoupling effects in a magnetic forming beryllium coil assembly

    Get PDF
    Decoupling effects in magnetic forming beryllium coil assembl

    Radiation environment for rendezvous and docking with nuclear rockets

    Get PDF
    Radiation environment data for the NERVA engine are provided which may be utilized in estimating radiation exposures associated with various space maneuvers. Spatial distributions of neutron and gamma tissue kerma rates produced during full thrust operation of the engine are presented. Final rendezvous with an orbiting space station would be achieved subsequent to full thrust operation during a period of 10 or more hours duration in which impulse is delivered by the propellant used for removal of decay heat. Consequently, post operation radiation levels are of prime importance in estimating space station exposures. Maps of gamma kerma rates around the engine are provided for decay times of 4 and 24 hours after a representative firing. Typical decay curves illustrating the dependence of post operation kerma rates on decay time and operating history are included. Examples of the kerma distributions around the engine which result from integration over specific exposure periods are shown

    Calibration of the EDGES High-Band Receiver to Observe the Global 21-cm Signature from the Epoch of Reionization

    Get PDF
    The EDGES High-Band experiment aims to detect the sky-average brightness temperature of the 2121-cm signal from the Epoch of Reionization (EoR) in the redshift range 14.8≳z≳6.514.8 \gtrsim z \gtrsim 6.5. To probe this redshifted signal, EDGES High-Band conducts single-antenna measurements in the frequency range 90−19090-190 MHz from the Murchison Radio-astronomy Observatory in Western Australia. In this paper, we describe the current strategy for calibration of the EDGES High-Band receiver and report calibration results for the instrument used in the 2015−20162015-2016 observational campaign. We propagate uncertainties in the receiver calibration measurements to the antenna temperature using a Monte Carlo approach. We define a performance objective of 11~mK residual RMS after modeling foreground subtraction from a fiducial temperature spectrum using a five-term polynomial. Most of the calibration uncertainties yield residuals of 11~mK or less at 95%95\% confidence. However, current uncertainties in the antenna and receiver reflection coefficients can lead to residuals of up to 2020 mK even in low-foreground sky regions. These dominant residuals could be reduced by 1) improving the accuracy in reflection measurements, especially their phase 2) improving the impedance match at the antenna-receiver interface, and 3) decreasing the changes with frequency of the antenna reflection phase.Comment: Updated to match version accepted by Ap
    • …
    corecore