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Fast sampling control of a class of diVerential linear
repetitive processes

S E Benton1, E Rogers1* and D H Owens2
1Department of Electronics and Computer Science, University of Southampton, UK
2Department of Automatic Control and Systems Engineering, University of SheYeld, UK

Abstract: Repetitive processes are a distinct class of two-dimensional linear systems of practical and
theoretical interest. Most of the available control theory for them is for the case of linear dynamics
and focuses on systems theoretic properties such as stability and controllability/observability. This
paper uses an extension of standard, or one-dimensional, feedback control schemes to control a
physically relevant subclass of these processes.
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NOTATION include long-wall coal cutting and metal rolling (see, for
example, references [1 ] and [2 ] and the relevant cited
references for a detailed treatment of these and otherG(z) plant transfer function matrix
physical examples), and algorithmic examples includeh sampling interval
classes of iterative learning control schemes [3 ] andk pass index " 0
solution algorithms for non-linear dynamic optimalK(z) forward path controller transfer
control algorithms based on the maximum principle [4 ].function matrix
The designation ‘algorithmic’ here denotes the factr( ·) spectral radius
that in such applications adopting a repetitive processt, p independent temporal or spatial
setting for analysis has distinct/unique advantages overvariables
alternative approaches.u

k
(t), u

k
( p) pass control input vector

The unique control problem for these processes is thatx
k
(t), x

k
( p) pass state vector

the output sequence of pass pro� les can contain oscil-y
k
(t), y

k
( p) pass pro� le vector

lations that increase in amplitude in the pass-to-passá pass length<?
direction. Such behaviour is easily generated in simu-

d · d norm, induced operator norm lation studies and in experiments on scaled models of
physical examples such as long-wall coal cutting and
cannot, in almost all cases, be removed by the appli-

1 INTRODUCTION cation of a standard, termed one-dimensional here, con-
trol action. This is precisely because such an approach

Repetitive (also termed multipass in the early literature) essentially ignores their inherent two-dimensional linear
processes are characterized by a series of sweeps, termed systems structure, i.e. information propagation in two
passes, through a set of dynamics de� ned over a � xed separate directions —along a given pass and from pass
� nite duration known as the pass length. On each pass to pass respectively. In particular, repetitive processes
an output, termed the pass pro� le, is produced which are a class of two-dimensional systems whose dis-
acts as a forcing function on, and hence contributes to, tinguishing feature (from other classes of such systems)
the dynamics of the next pass pro� le. Industrial examples is that information propagation in one of the two separ-

ate (or distinct) directions only takes place over a � nite
and � xed duration—the pass length.

A rigorous stability theory for linear constant passThe MS was received on 5 December 2000 and was accepted after
revision for publication on 24 July 2001. length processes has been developed [5, 6 ]. This theory
* Corresponding author: Department of Electronics and Computer

is based on an abstract model in a Banach space settingScience, University of Southampton, High� eld, Southampton
SO17 1BJ, UK. which includes all such processes as special cases. Also,
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522 S E BENTON, E ROGERS AND D H OWENS

the results of applying this abstract theory to a range of 0 å t å á and k " 0 has the form
subclasses of practical interest are known. These include
so-called diVerential and discrete linear repetitive xÇ

k+ 1
(t)=Ax

k+ 1
(t)+Bu

k+ 1
(t)+B

0 y
k
(t)

y
k+ 1

(t)=Cx
k+ 1

(t)+D0 y
k
(t)processes which are the subject of this paper.

DiVerential linear repetitive processes have strong (1)
structural links with one-dimensional diVerential linear

Here, on pass k, x
k
(t) is the n×1 state vector, y

k
(t) issystems. For example, the stability conditions in this case

the m×1 vector pass pro� le and u
k
(t) is the l×1 vectorcan be tested by direct application of well-known one-

of control inputs. To complete the process description itdimensional linear systems tests. This raises the natural
is necessary to specify the initial conditions, i.e. the passquestion of what exactly can be achieved by the use of
state initial vector sequence and the initial pass pro� le.one-dimensional feedback control schemes in this con-
These are also termed the boundary conditions, and thetext, e.g. is it possible to use a one-dimensional unity
simplest possible form of them is assumed in this work,negative feedback control scheme to stabilize these pro-
i.e.cesses. The results of this paper show that this problem

has a solution in one case of practical interest but only
when feedback control action on the current pass is

x
k+ 1

(0)=d
k+1

, k " 0

y0(t)=y(t ), 0 å t å áaugmented by well-de� ned feedforward action from the
(2)previous pass.

where d
k+ 1

is a constant n×1 vector and the elements
in the m×1 vector y(t) are known functions of t. Note
also that the structure of the boundary conditions alone

2 BACKGROUND has a critical in� uence on the stability properties of a
given example [7 ]. (Essentially, reference [7 ] shows that
a stable example described by (1) and (2) can be madeThe essential unique characteristic of a repetitive process
unstable by adding to x

k+1
(0) a term that is an explicitcan be illustrated by considering machining operations

function of points along the previous pass pro� le.)where the material or workpiece involved is processed
The stability theory [5, 6 ] is based on an abstractby a series of sweeps, termed passes, of a processing tool.

model in a Banach space setting which includes all pro-Assuming that the pass length á<+? is constant, the
cesses with linear dynamics and a constant pass lengthoutput vector, or pass pro� le y

k
(t), 0 å t å á, generated

as special cases. This theory consists of two separateon pass k acts as a forcing function on, and hence con-
concepts termed asymptotic stability and stability alongtributes to, the dynamics of the new pass pro� le y

k+ 1
(t),

the pass respectively. In eVect, asymptotic stability0 å t å á, k " 0. This explicit interaction between suc-
demands that bounded input sequences producecessive pass pro� les is the source of the unique control
bounded output sequences of pass pro� les (in terms ofproblem for these processes in that the sequence of pass
the norm on the underlying function space) over thepro� les generated { y

k
}
k£1

can contain oscillations that
(� nite and constant) pass length. Stability along the passincrease in amplitude in the pass-to-pass (i.e. k)
is the stronger concept that bounded input sequencesdirection.
produce bounded sequences of pass pro� les independentIn the case of long-wall cutting (see reference [1 ] ), the
of the pass length. Asymptotic stability over all possibleunique control problem appears as severe undulations
pass lengths is a necessary condition for stability alongin the newly cut � oor pro� le [caused by the machine
the pass and, although applications do exist (see refer-weight (up to 5 t in some cases) as it proceeds along the
ences [3 ] and [4 ] ) where asymptotic stability is all thatcoal face resting on the � oor pro� le cut during the pre-
is required or achievable, it is stability along the passvious pass] which means that cutting operations (i.e. pro-
that is required in the vast majority of cases.ductive work) must be suspended to enable their manual

The following result gives necessary and suYcient con-removal. This problem is one of the key factors behind
ditions for stability along the pass of processes describedthe ‘stop/start’ cutting pattern in a typical working cycle
by (1) and (2).in a coal mine. Also, as with all repetitive processes, this

problem cannot be removed by direct application of a
Theorem 1one-dimensional control action precisely because such

an approach essentially ignores their � nite pass length Suppose that the pair {A, B0} is controllable and the
repeatable nature and the eVects of resetting the initial pair {C, A} is observable. Then diVerential linear repeti-
conditions prior to starting the next pass. Instead, the tive processes described by (1) and (2) are stable along
control of these processes must be based on abstract the pass if, and only if:
model based stability theory [5, 6 ].

This paper considers the case of diVerential linear (a) all eigenvalues of matrix D0 have a modulus strictly
less than unity;repetitive processes whose state-space model over
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(b) all eigenvalues of matrix A have strictly negative A simple example that demonstrates this key fact is
the following process where â>0 is a real scalar:real parts;

(c) all eigenvalues of the transfer function matrix

G(s)=C(sI
n
­ A) Õ 1B0+D0 (3)

yÇ
k+ 1

(t)=­ y
k+1

(t)+u
k+ 1

(t)+(1+â)y
k
(t)

x
k+ 1

(0)=0,

y
k+ 1

(t)=x
k+ 1

(t), 0 å t å áhave a modulus strictly less than unity Y s= éö,
ö " 0.

(6)
A key advantage of this set of conditions is that they which is asymptotically stable with limit pro� le
can be tested by direct application of one-dimensional

yÇ
2

(t)=ây
2

(t)+u
2

(t), y
2

(0)=0, 0 å t å á(diVerential and discrete as required ) linear systems stab-
(7)ility tests. Also, each of them has a well-de� ned physical

interpretation. In particular, condition (a) in this result Also, if u
k+1

(t)¬1 and y0(t)=y(t)¬0, 0 å t å á, k " 0,
is the necessary and suYcient condition for asymptotic
stability (asymptotic stability for all possible values of y1(t)=1 ­ e Õ t, 0 å t å á

y
2

(t)=â Õ 1(eât ­ 1), 0 å t å áthe pass length is a necessary condition for stability along
the pass) and, in physical terms, demands that the (8)
sequence of pass initial responses {y

k
(0)}

k£1
does not

i.e. despite the fact that the � rst pass pro� le y1(t) is abecome unbounded in a well-de� ned sense as the pass
quite acceptable ‘classical response’ to the unit step com-number k ! ?. Condition (b) governs the dynamics pro-
mand, the resulting limit pro� le has quite unacceptableduced along a given pass but is only a necessary con-
dynamic characterisics. In particular, its pass dynamicsdition for stability along the pass (e.g. the example
grow exponentially and can be said to be ‘unstable alongbelow). Finally, condition (c) can be interpreted physi-
the pass’ in an obvious intuitive sense. In terms ofcally as the requirement that each frequency component
Theorem 1, it is condition (c) that does not hold if â>0of the initial pro� le is attenuated from pass to pass [and
since G(s)=(1+â)/(s+1). Hence, stability along thenot just the d.c. component as in condition (a) here].
pass requires that â<0.The so-called limit pro� le, whose existence is guaran-

teed by asymptotic stability and hence stability along the
pass, provides information on transient behaviour in the

3 CONTROL AND PERFORMANCEpass-to-pass (i.e. k) direction. Suppose, therefore, that a
SPECIFICATIONSprocess described by (1) and (2) is asymptotically stable

and the control input sequence applied {uk}
k£1

con-
The form of the limit pro� le for diVerential [and discreteverges strongly (in the sense of the norm on the under-
(see references [5 ] and [6 ] )] linear repetitive processeslying function space) to u

2
. Then the resulting limit

has led (see reference [2 ] for details) to the followingpro� le is formally de� ned in terms of the output
general-purpose performance speci� cation in addition tosequence of pass pro� les {yk}

k£1
as the strong limit

the obvious requirement of stability along the pass.
y
2

) lim
k � +2

y
k

(4) Drive the output sequence of pass pro� les {y
k
}
k£1

to
a limit pro� le y

2
with ‘acceptable’ along the pass dynam-

In state-space terms, the limit pro� le of a process ics. ‘Practical’ convergence should occur in a ‘reason-
described by (1) and (2) is described by the following able’ number of passes and, simultaneously, ‘tolerable’
one-dimensional diVerential linear systems state-space errors on any pass k should be guaranteed.
model over 0 å t å á: Many of these features will need interpretation in the

context of the particular application under consider-
ation. Further details on this central issue can be found

xÇ
2

(t)=(A+B0(I
m

­ D0) Õ 1C )x
2

(t)+Bu
2

(t)

y
2

(t)=(I
m

­ D0) Õ 1Cx
2

(t), x
2

(0)=d
2 in reference [2 ], but here the focus is on the use of fast

(5) sampling control, the precise meaning of which will be
given later in the paper.

where d
2

denotes the strong limit of the sequence
Consider the output of a process described by (1) and

{d
k
}
k£1

.
(2) at instant t on pass k. Then the information in the

As noted above, asymptotic stability guarantees the
following set is available to be used for output feedback

existence of the limit pro� le for processes described by
control:

(1) and (2) which is simply a strictly proper one-
dimensional diVerential linear time-invariant system.
This property does not, however, guarantee that the

Y=Y
1
< Y

2
Y1={y

k
(ô): 0 å ô å t}

Y2={y
k̂
(ô): 0 å ô å á, 0 å k̂ å k ­ 1}

resulting limit pro� le has the most basic acceptable pass
dynamics, i.e. stability as a one-dimensional linear
system. (9)
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Clearly, however, the most appealing schemes from an (2) in the following form:
implementation standpoint will be those that explicitly
use only information from pass k since they have an x

k+ 1
(0)=d

k+1
, k " 0

y0( p)=y( p), 0 å p å áobviously simpler structure (in terms, for example, of
the information required to calculate the control signal (12)
at a given instant). The simplest of all the possible con-

where d
k+ 1

is an n×1 vector with constant entries andtrollers that only use current pass information are
the elements in the m×1 vector y( p) are known func-so-called memoryless schemes which compute the con-
tions of p. Necessary and suYcient conditions for stab-trol signal at (k, t ) using only information at this instant.
ility along the pass of processes described by (11) andAll such schemes eVectively ignore the previous pass
(12) are given by the following result.dynamics and essentially regard them as disturbances

that need to be rejected.
Theorem 2Such schemes have been extensively investigated in,

for example, reference [2 ], and it has been concluded Suppose that the pair {¼, ¢
0} is controllable and the

that (as may be expected intuitively) they are somewhat pair {C, ¼} is observable. Then discrete linear repetitive
limited in terms of the subclasses of (1) and (2) (and the processes described by (11) and (12) are stable along
natural discrete counterpart) to which they can be suc- the pass if, and only if:
cessively applied. Also, if previous pass information is

(a) all eigenvalues of matrices D0 and ¼ have a modulusto be explicitly included in the controller (s) then there
strictly less than unity;is, as yet, little known about the most eVective way of

(b) all eigenvalues of the transfer function matrixusing such information. This paper gives the � rst major
results on this key question in terms of so-called mem- G(z)=C(zI

n
­ ¼) Õ 1¢0+D0 (13)

oryless dynamic unity negative feedback control schemes
have a modulus strictly less than unity Y |z |=1.with repetitive minor loop compensation. Such schemes

have the form Note also that no loss of generality arises from setting
D

0
=0 and d

k+ 1
=0, k " 0, for both diVerential andu

k+1
(t)= ŷ

k+ 1
(t ) ­ K1 y

k
(t), 0 å t å á, k " 0

discrete processes in what follows in this paper.(10)
In the remainder of this section, it will be shown how

where ŷ
k+1

(t) is the output of a one-dimensional linear a model of the form (11) and (12) results from sampling
time-invariant system de� ned by the state-space quad- a process of the form (1) and (2), and the achievable
ruple {F, G, H, J} actuated by the current pass error accuracy will be considered. To start with, � rst write (1)
vector e

k+1
(t) which is de� ned as e

k+ 1
(t)= and (2) in the form

r
k+ 1

(t) ­ y
k+ 1

(t), where r
k+ 1

(t) is an m×1 reference
vector taken to represent the desired behaviour on pass
k+1. The so-called previous pass controller K1 has (in y

k+ 1
(t)=C P t

0
eA(t Õ ô ) [B0 y

k
(ô)+Bu

k+ 1
(ô)] dô,

0 å t å á, k " 0
this case) constant entries. In the remainder of this paper,
new results are developed on the design of the digital

(14)form of control schemes with the structure of (10) to
yield high-performance control of a subclass of processes Suppose also that this model is subject to synchronous
described by (1) and (2) under fast sampling action sampling with sampling interval h and a piecewise
(de� ned in the next section). constant input vector, i.e.

u
k+ 1

(t)=u
k+ 1

( ph) ) up
k+1 (15)

4 FAST SAMPLING where ph å t<( p+1)h and 0 å p å á/h. Also, write
xp

k+1 ) x
k+1

( ph), yp
k+1 ) y

k+ 1
( ph), 0 å p å á/h. Then, at

The natural discrete analogue of (1) is the so-called dis- t=ph, (14) can be written for k " 0 as
crete repetitive process with the following state-space
model over 0 å p å á and k " 0: y

k+ 1
( ph)=C P ph

0
eA(ph Õ ô ) [B0 y

k
(ô)+Bu

k+ 1
(ô)] dô

(16)
x

k+1
( p+1)=¼x

k+1
( p)+¢u

k+1
( p)+¢

0 y
k
( p)

y
k+1

( p)=Cx
k+ 1

( p)+D
0 y

k
( p)

and also the state equation in (1) takes the following(11)
form:

where the current pass state, pass pro� le and input vec-
tors have the same dimensions as in (1). Also, the sim- x

k+ 1
( ph)=eAph GP ph

0
e Õ Aô [B0 y

k
(ô)+Bu

k+ 1
(ô)] dôHplest possible form is again assumed for the boundary

conditions, i.e. the discrete equivalents of the entries in (17)

I08700 © IMechE 2001Proc Instn Mech Engrs Vol 215 Part I



525FAST SAMPLING CONTROL OF A CLASS OF DIFFERENTIAL LINEAR REPETITIVE PROCESSES

At instant t=( p+1)h, the following holds for k " 0: ous sampling scheme becomes a diVerential linear repeti-
tive process of form (1) and (2) in the limit as h ! 0. To
start with, � rst note that from equation (22) it is possiblex

k+1
(( p+1)h)=eAh Gx

k+ 1
( ph)

to write

lim
h � 0

(xp+ 1
k+ 1

­ xp
k+ 1

)+eAph P (p+1)h

ph
eAh e Õ Aô [B0y

k
(ô)+Bu

k+1
(ô)] dôH (18)

and each term in turn in this equation is now considered. = lim
h � 0+ C(eAh ­ I

n
)xp

k+ 1
+eAh P h

0
e Õ Aô B dô up

k+ 1In particular, since the current pass input vector is
assumed to be piecewise continuous, i.e. u

k+ 1
(t)¬

+eAh P h

0
e Õ Aô B

0 dô yp
kD (24)u

k+ 1
( ph)on [ ph, ( p+1)h), it is possible to write, for

0 å p å á/h and k " 0,
Each term in this last equation will now be individually
considered.eAheAph P (p+1)h

ph
e Õ Aô Bu

k+ 1
(ô) dô

Consider � rstly the term involving xp
k+1

. Then, using
the power series expansion for eAh, it is possible to write

=eAheAphe Õ Aph P h

0
e Õ Aô B dô u

k+ 1
( ph)

lim
h � 0

1
h

(eAh ­ I
n
)xp

k+1
= lim

h � 0
[I

n
+Ah+O(h2) ­ I

n
]xp

k+ 1
=eAh P h

0
e Õ Aô B dô up

k+ 1
(19)

=Axp
k+ 1

(25)

where O(h2) represents terms in h2 and higher powers.Also, under the assumption that h ! 0, which is termed
In the case of the term involving up

k+ 1
, it is possible tofast sampling, y

k
(t) over the interval [ ph, ( p+1)h) can

writebe approximated by y
k
( ph), 0 å p å á/h, k " 0. The accu-

racy of this approximation improves with decreasing h
and on [ ph, ( p+1)h), lim

h � 0

1
h AeAh P h

0
e Õ Aô B dô up

k+ 1B
lim
h � 0

y
k
(ô)=y

k
( ph) (20)

= lim
h � 0

1

h G[I
n
+Ah+O(h2)]

which is equivalent to the assumption that the previous
pass pro� le is piecewise continuous. Hence with this
assumption, the term involving y

k
(t) in equation (18) × P h

0
[I

n
­ Aô+O(ô2)]B dô up

k+ 1Hcan be written as

= lim
h � 0

1
h

{[I
n
+Ah+O(h2)] [h+O(h2)]up

k+ 1
}eAheAph P (p+1)h

ph
e Õ Aô B0 y

k
(ô) dô=eAh P h

0
e Õ Aô B0 dô yp

k

(21) =Bup
k+ 1

(26)
It is now also possible to write In the case of the term involving yp

k
, a similar analysis

to that of equation (26) shows that, as h ! 0, this term
xp+1

k+1
=eAhxp

k+1
+eAh P h

0
e Õ Aô(B dô up

k+ 1
+B

0 dô yp
k
) can be replaced by B0 yp

k
. Also, as h ! 0, up

k+ 1
and yp

k
become continuous variables.(22)

Combining the above results, and noting that, in the
Then it follows from comparison with process (11) that limit,

lim
h � 0

1
h

(xp+ 1
k+ 1

­ xp
k+ 1

)=xÇ p
k+ 1

(27)
¼=eAh

¢=¼ P h

0
e Õ Aô B dô

¢
0=¼ P h

0
e Õ Aô B0 dô

it is possible to write

xÇ p
k+ 1

=Axp
k+ 1

+Bup
k+ 1

+B0 yp
k

(28)

which, as h ! 0, approaches
(23)

xÇ
k+ 1

(t)=Ax
k+ 1

(t)+Bu
k+ 1

(t)+B
0 y

k
(t) (29)

and also that the matrices de� ning the output (pass pro-
� le vector) updating are unchanged by the sampling This last equation, when combined with the fact that

both the output equation and the boundary conditionsoperation.
Now it will be shown that the discrete linear negative in this case are static, is just the diVerential linear repeti-

tive process state-space model of (1) and (2).process (11) and (12) obtained via the above synchron-
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5 DISCRETE MULTIVARIATE FIRST-ORDER is chosen as proportional control applied on the current
pass. Then the general parametric form of this controllerLAG ANALYSIS AND DESIGN
is (by analogy with the one-dimensional case)

Consider � rst the case of a controllable and observable K(z)=B̂
0 diag(1 ­ k

j
)
1¢ j¢m

­ B̂
1

(37)
one-dimensional discrete linear system with m inputs and

Also, introduce r0(z)=det(zI
m

­ ¼) which in this par-m outputs whose state-space model is de� ned by the
ticular case is given bystate-space triple {¼, ¢, C} with inverse transfer func-

tion matrix
r0(z)¬det(B̂Õ 1

0
) det(G Õ 1(z)) (38)

G Õ 1(z)=(z ­ 1)B̂0
+B̂

1 (30)
where G Õ 1(z) is de� ned by (30). Hence, since asymptotic

where B̂0 and B̂1 are real m×m matrices and stability holds both open and closed loop, it follows
det(B̂0) ë 0. An equivalent de� nition is an m-input immediately that closed-loop stability along the pass
m-output discrete time model with state dimension equal holds if, and only if,
to the output vector dimension and det (C¢ ) ë 0, i.e. the

rc (z)=r0(z) det[I
m

+G (z)K(z)]transfer function matrix in this case has minimal state
space realization de� ned by =det(B̂Õ 1

0
) det[G Õ 1(z)+K(z)]

¼=I
m

­ B̂Õ 1
0

B̂1 , ¢=B̂Õ 1
0

, C=I
m

(31)
= #

m

j=1
(z ­ k

j
) ë 0, Y |z | " 1 (39)

A one-dimensional discrete linear system with this struc-
ture is termed a discrete multivariable lag (by analogy and hence, closed-loop stability along the pass if, and
with the classical single-input single-output case), and a only if, k

j
µ(­ 1, 1), 1 å j å m.

‘rich’ control theory for such processes exists [8 ]. Under this form of control scheme, the limit pro� le is
In the case of discrete linear repetitive processes, the reached on the � rst pass and its dynamics is de� ned by

natural generalization of the multivariable � rst-order lag the transfer function H(z). As in the one-dimensional
structure over 0 å p å á and k " 0 is linear systems case, closed-loop transient performance

can be assessed by evaluation of the closed-loop transfer
function matrix, i.e.

x̃
k+1

( p+1)=(I
m

­ B̂Õ 1
0

B̂1)x̃
k+1

( p)+B̂Õ 1
0

u
k+1

( p)

+¢̂
0 y

k
( p)

y
k+1

( p)=x̃
k+ 1

( p)
H(z)= [I

m
+G(z)K(z)] Õ 1G (z)K(z)

= [G Õ 1(z)+K(z)] Õ 1K(z)(32)

which can, in fact, be obtained from (11) (with D0=0) =diag A 1
z ­ k

j
B

1¢j¢m
[diag(1 ­ k

j
)
1¢j¢m

­ B̂Õ 1
0

B̂
1
]

by using a simple transformation of the current pass
(40)state vector. Consider also now the discrete equivalent

of the control scheme of (10) over 0 å p å á and k " 0,
Hence, the closed-loop limit pro� le will have small

i.e. steady state errors and small interaction eVects in
response to unit step commands only provided theu

k+1
( p)= ŷ

k+ 1
( p) ­ K1y

k
( p) (33)

elements of the matrix B̂Õ 1
0

B̂
1

are ‘suYciently small’. In
and set particular, it will have these properties if the sampling

rate is ‘fast enough’.K1=B̂0
¢̂

0 (34)
To discuss this last point further, suppose (for sim-

Then it follows that the resulting closed-loop system in plicity) that matrix A of the underlying diVerential pro-
this case can be written in z transform terms (see refer- cess has a diagonal canonical form with eigenvalues ì

j
,

ence [2 ] for the details of how to avoid potential prob- 1 å j å m, and eigenvector matrix E. Then
lems caused by the fact that the pass length is � nite) as

¼=E diag(eì
ih)1¢ j¢m

E Õ 1 (41)
Y

k+ 1
(z)=H(z)R

k+1
(z) (35)

suggests that a necessary condition for B̂Õ 1
0

B̂
1

to be
where ‘small’ is that

|ì
j
h |¿1, 1 å j å m (42)

H(z)= [I
m

+G(z)K(z)] Õ 1G(z)K(z)

G(z)=(zI
m

­ I
m

+B̂Õ 1
0

B̂
1) Õ 1B̂ Õ 1

0 Equivalently, the sampling rate must be ‘fast’ in
(36)

comparison with the eigenvalues of matrix A in the
underlying diVerential process.The controller transfer function matrix K(z) here is

assumed to be generated by a one-dimensional discrete The above analysis is easily extended to the choice of
K(z) as a controllable and observable proportional-plus-linear system with state-space quadruple {P, M, N, Q}.

Suppose now that, with equation (34) in place, K(z) summation controller of the general parametric form
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This last point can be illustrated by considering the
K(z)=B̂

0 diag C1 ­ k
j
c
j
+

(1 ­ k
j
)(1 ­ c

j
)

z ­ 1 D
1¢j¢m

presence of current pass measurement delays represented
by the simple diagonal matrix

­ B̂
1

(43)
F (z)=z Õ dI

m
, d " 0 (51)

Suppose that only q of the parameters c
j
, 1 å j å m, are

in the feedback path. Considering (for simplicity) thenot equal to unity. Then it follows immediately that
proportional version of K(z) de� ned by (37) givesthe controller (K(z)) has minimal realization of state

dimension q, and hence that in this case rc(z)=zmd det( B̂Õ 1
0

) det[G Õ 1(z)] det[I
m

+G(z)K(z)F(z)]

r
0(z)=(z ­ 1)q det(zI

m
­ ¼) =zmd det(B̂Õ 1

0
) det[G Õ 1(z)+K(z)F(z)]

=(z ­ 1)q det(B̂Õ 1
0

) det[G Õ 1(z)] (44) =zmd det{(z ­ 1)I
m

+B̂Õ 1
0

B̂
1

Note now that the analysis reduces to the previous case +z Õ d [diag(1 ­ k
j
)
1¢j¢m

­ B̂Õ 1
0

B̂
1
]}

(proportional action only) if q=0, and that closed-loop
=det{diag[zd(z ­ 1)+1 ­ k

j
]
1¢j¢mstability along the pass here holds if, and only if,

+(zd ­ 1)B̂Õ 1
0

B̂
1
} (52)rc(z)=r0(z) det[I

m
+G(z)K(z)] (45)

Using this last equation, it follows that at all ‘high=(z ­ 1)q det(B̂Õ 1
0

) det (G Õ 1(z)+K(z))
enough’ sampling rates the term B̂ Õ 1

0
B̂

1
can be neglected

to yield as h ! 0=C #
m

j=1
(z ­ k

j
)D C #

cj ¡1
(z ­ c

j
)D (46)

rc (z) # #
m

j=1
[zd(z ­ 1)+(1 ­ k

j
)] (53)

i.e. closed-loop stability along the pass if, and only if,
k
j
µ(­ 1, 1) and c

j
µ(­ 1, 1 ], 1 å j å m. Considering solutions of zd(z ­ 1)+1 ­ k

j
=0 in the

In practice, the inclusion of summation action would vicinity of z=k
j
=1, the relation

normally be considered in cases where proportional
action displayed large steady state errors. Also, the reset dz

dk
j
K
z=kj=1

=1 (54)
times will normally be considerably longer than the rise
times, i.e. it is likely that guarantees the existence of positive real numbers å

j
>0,

|1 ­ c
j
|¿ |1 ­ k

j
|, 1 å j å m (47) 1 å j å m, such that the solutions of r

c(
z)=0 lie in the

open unit circle in the complex plane for 1 ­ å
j
<k

j
<1,and hence H(z) of (40) is still a good representation of

1 å j å m, and all ‘high enough’ sampling rates.the closed-loop limit pro� le dynamics, with the exception
that steady state errors in response to step commands
will be zero in all channels of the limit pro� le output 6 AN EXTENSION
vector y

2
( p) corresponding to parameters c

j
ë 1. This

fact is easily veri� ed by noting that The analysis of the � rst part of this section makes use
lim
z � 1

H(z)= lim
z � 1

[G Õ 1(z)+K(z)] Õ 1K(z) of the following result for one-dimensional discrete-time
linear systems that was originally given in reference [8 ]

=I
m

­ MB̂ Õ 1
0

B̂
1

(48) [where Q(z) is the forward path transfer function of the
unity negative feedback control scheme with plant trans-where
fer function G(z) and forward path transfer function

M=diag(m
j
)
1¢j¢m

(49) matrix K(z), i.e. Q(z)=G(z)K(z)].

and Theorem 3

Suppose that the controllable and observable one-
m

j
=q0, c

j
ë 1

1

1 ­ k
j
, c

j
=1

(50) dimensional minimum phase m×m discrete-time linear
system Q(z) is to be approximated by the invertible mini-
mum phase one-dimensional discrete-time linear systemThe analysis just completed is, in eVect, a rather idealized
Q

A(z). Suppose also that Q
A(z) is stable under unityconcept of control action and, in practice, there may be

negative feedback control and that the poles of thesigni� cant delays in the control loops owing, for
closed-loop system generated by Q(z) under unity nega-example, to measurement or actuator delays in the
tive feedback control lie in the open ball |z |<R, wheresystem, where here it is assumed that these occur on the
R>1. Then the system Q (z) is stable under unitycurrent pass. Essentially, these delays will not adversely
negative feedback control if the following so-calledaVect system performance provided that the sampling
contraction condition holds:rate is ‘fast’ compared with the (current pass) closed-

loop system responses. d (I
m

+Q Õ 1A (z)) Õ 1(Q Õ 1A (z) ­ Q Õ 1(z)) d <1 (55)
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where, if E(z) is any m×m matrix function of z, relevant matrix is

E(z)=(I
m

+Q Õ 1a (z)) Õ 1(QÕ 1a (z) ­ Q Õ 1(z))
d E(z) d ) max

1¢ j¢m
max

|z|=1, |z|=R
æ
m

i=1
|L

ji
(z) | (56)

=(K(z)+G Õ 1a (z)) Õ 1(GÕ 1a (z) ­ G Õ 1(z))
This result is proved by noting that the controllability

and observability assumptions ensure that the closed- =(­ 1) diag C z ­ 1

(z ­ k
j
) (z ­ c

j
)D

1¢ j¢m

H(z) (61)
loop system is stable in the one-dimensional asymptotic
sense if, and only if, the matrix and a suYcient condition for closed-loop stability along

the pass is that d E(z) d <1.(I
m

+Q (z)) Õ 1Q(z)¬(I
m

+Q Õ 1(z)) Õ 1
It would be possible directly to investigate this last

is analytic and bounded in the region 1<|z |<R, i.e. if, condition if the inverse system were computed from the
and only if, the solution of state-space triple {¼, ¢, C} using known techniques

(see, for example, reference [9 ]) and noting the fact thaty(z)=­ Q Õ 1(z)y(z)+â (57)
the condition det (B̂0) ë 0 is equivalent to the condition

is analytic and bounded in 1<|z |<R independently of det(C¢) ë 0. Note also that the contraction condition
the choice of âµ m. here can be replaced by the simpler condition

Now write equation (57) in the form

max
1¢j¢m

max
|z|=1

æ
m

j=1

|E
ji

(z) |<1 (62)y(z)= [I
m

+Q Õ 1A (z)] Õ 1{[Q Õ 1A (z) ­ Q Õ 1(z)]y(z)+â}
(58)

by letting R ! ? and noting that E(z)=O(z Õ 1).
then the remainder of the proof is identical to that refer- The question that must now be addressed is whether
enced in reference [8 ] for the equivalent one-dimensional or not the contraction condition can be satis� ed for a
diVerential linear systems case with the Nyquist contour ‘reasonable’ class of examples. In which context, suppose
replaced by the closed region 1 å |z | å R. Hence, the that discrete linear repetitive process (11) can be
details are omitted here. regarded as a discrete representation of diVerential linear

In practice, R will, of course, be unknown, but this repetititve process (1) with sampling period h>0. Then
does not limit the applicability of the result since RÀ1 the following result will be obtained.
can always be taken. Given Q (z) and QA(z), the contrac-
tion condition (55) can be tested numerically but its Theorem 4
major use here is for theoretical closed-loop stability
analysis of the previous section to the control of discrete Suppose that the one-dimensional diVerential linear
linear repetitive processes. time-invariant system S(A, B, C ) formed from the

Return, therefore, to the analysis of the previous sec- diVerential linear repetitive process state-space model (1)
tion and suppose that the inverse of the transfer function is minimum phase and det(CB) ë 0. Suppose also that
matrix G(z) is of the form this repetitive process is to be controlled by a control

law of the form (33) and (34), where ŷ
k+ 1

( p) is gener-G Õ 1(z)=(z ­ 1)B̂
0
+B̂

1
+B̂

0
Ĥ(z) (59)

ated by a K(z) of form (43). Then, for each choice of
where Ĥ(z) is proper with Ĥ(1)=0 and, as before, parameters k

j
and c

j
, 1 å j å m, there exists a positive

det(B̂0) ë 0. Also the m×m multivariable � rst-order lag real number h* such that for hµ(0, h*) the one-
transfer function matrix Ga(z) de� ned as dimensional discrete linear time-invariant system

S(¼, ¢, C ) of the resulting discrete linear repetitive pro-G Õ 1a (z)=(z ­ 1)B̂0
+B̂

1 (60)
cess is minimum phase with the inverse of the form given

is to be used as a reduced-order model for controller by equation (59), and the contraction condition for
design purposes. Note that Ga(z) is a good approxi- closed-loop stability along the pass holds.
mation to the high-frequency and steady state behaviour

Proof. Firstly note that S(¼, ¢, C ) is the inverse ofof the one-dimensional linear system de� ned by the state-
the form given in equation (59) if, and only if,space triple {¼, ¢, C} but contains no information on
C¢(= B̂Õ 1

0
) is non-singular. Using (23),its zero structure—in fact, Ga (z) has no zeros.

Suppose now that the analysis of the previous section lim
h � 0

h Õ 1C¢=CB (63)
is used to design a proportional-plus-summation con-
troller of form (43) for unity negative feedback control which, by assumption, is non-singular. It therefore fol-
of the one-dimensional discrete linear system described lows that equation (59) is the correct parametric rep-
by G

a (z). Suppose also that this controller is used in resentation of the inverse system at all high enough
repetitive process control law (33) with K1 again de� ned sampling rates.
by equation (34). Then, contraction condition (55) can Using results in reference [9 ], note that
be used to assess closed-loop stability along the pass
of the resulting discrete linear repetitive process. The G Õ 1(z)
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hence E(z)] converges uniformly to zero on |z |=1 as=(z ­ 1)(C¢ ) Õ 1 ­ (C¢) Õ 1C{¼ ­ I
n
}¢(C¢ ) Õ 1

h ! 0. This completes the proof of the result since suit-
able choice of h* ensures that d E(z) d <1, 0<h<h*.­ (C¢) Õ 1C{¼ ­ I

n
}M(zI

n
­ N¼M ) Õ 1

×N{¼ ­ I
n
}¢(C¢ ) Õ 1 (64) In eVect, this last theorem states that the contraction

condition for closed-loop stability along the pass iswhere N and M are (n ­ m)×n and n×(n ­ m) full-rank
always satis� ed if the one-dimensional diVerential systemmatrices respectively, which satisfy
S(A, B, C ), which, in eVect, describes the contribution

CM=0, N¢=0, NM=I
n Õ m

(65) of the current pass input vector to the pass pro� le of a
diVerential linear repetitive process with state-spaceIt follows immediately that
model (1), is minimum phase, uniform rank one, and

H(z)=C{¼ ­ I
n
} the sampling rate is fast enough. Note also that these

conditions are suYcient only and do not necessarily pre-×M [{I
n
­ N¼M}Õ 1 ­ (zI

n
­ N¼M}Õ 1 ]

vent application of the technique if they do not hold.
×N{¼ ­ I

n
}¢(C¢ ) Õ 1 The following is a systematic procedure for the appli-

cation of Theorem 4:=C{¼ ­ I
n
}M(z ­ 1)(I

n
­ N¼M ) Õ 1

×(zI
n
­ N¼M ) Õ 1N{¼ ­ I

n
}¢(C¢ ) Õ 1 (66) Step 1. Evaluate the matrices B̂

0 and B̂
1 . One way of

doing this is from the matrices ¼, ¢, C, using knownNow consider the behaviour of H(z) as h ! 0 on the unit
formulae for the inverse of one-dimensional discretecircle |z |=1. Then the eigenvalues ì

1 , . . . , ì
n Õ m

of N¼M
linear systems (see, for example, reference [9 ] and theare simply the n ­ m zeros [9 ] of S(¼, ¢, C ), i.e. the
relevant cited references). Alternatively, if r(¼)<1,n ­ m solutions of
these matrices may be deduced by obtaining the
response of the one-dimensional discrete linear system

z(ì)=det AìI
n
­ ¼ ­ ¢

C 0 B=0 (67) S(¼, ¢, C ) to step inputs from zero initial conditions.
In particular, the output responses of this system from

Then, since zero initial conditions to the vector step demand r at
p=1 and p=? are¼=I

n
+Ah+O(h2)

¢=hB+O(h2) y1=B̂Õ 1
0

r, y
2

=B̂Õ 1
1

r (72)
(68)

and B̂0 and B̂1 are easily evaluated from these data
it follows that by taking m linearly independent step demands

r1 , r2 , . . . , r
m

.ì
j
=1+z

j
h+O(h2), 1 å j å n ­ m (69)

where z
1 , .. . , z

n Õ m
are the zeros of the continuous time Step 2. Compute K1 of (34) and choose a proportional-

system S(A, B, C ). By the minimum phase assumption, plus-summation controller of form (43) to meet the
all of these numbers have strictly negative real parts, and performance speci� cations on the resulting closed-
hence {ì

j
}
1¢j¢n Õ m

lie in the open unit circle in the com- loop limit pro� le.
plex plane for all ‘fast enough’ sampling rates.

Step 3. Check stability along the pass of the actualEquivalently, S(¼, ¢, C ) is minimum phase for all ‘fast
closed-loop system by a numerical check of contrac-enough’ sampling rates.
tion condition (55). If the system is unstable alongTo prove the last part, suppose, without loss of gener-
the pass, consider the possibility of increasing the sam-ality, that M is constant. Then the assumption that
pling rate.det(CB) ë 0 ensures that the limit N0 ) lim

h � 0
N exists,

and also that N0M=I
n Õ m

and N0B=0. Also, the mini-
mum phase nature of S(A, B, C ) ensures that The above theory will remain essentially the same in
det(N0AM ) ë 0, and this fact, together with (63) and the presence of sensor or actuator delays, provided
(68) and the identity that the sampling rate is fast enough (relative to the

designed closed-loop limit pro� le responses), and also(zI
n
­ N¼M ) Õ 1= [(z ­ 1)I

n
­ N0AMh+O(h2)] Õ 1

that the requirement that Ĥ(1)=0 in equation (59)(70)
can be removed without altering the results. To see

guarantees that there exists h*>0 and e>0 such that that this is indeed possible, � rstly note that B̂
1 rep-

resents steady state response characteristics and hencesup
0< h< h*

d (z ­ 1) Õ 1H(z) d <e (71)
it is independent of the sampling rate. Suppose also
that B̃1is some other constant m×m matrix that isIn particular, (z ­ 1) Õ 1H(z) converges uniformly to zero

as h ! 0 on any relatively open subset T of the unit circle used instead of B̂1 . Then, since the theoretical develop-
ment is, with the exception of Theorem 4, independentnot containing the point z=1 from which H(z) [and
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of the assumption Ĥ(1)=0, the analysis follows REFERENCES
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