644 research outputs found

    Mass spectrometry imaging for plant biology: A review

    Get PDF
    Mass spectrometry imaging (MSI) is a developing technique to measure the spatio-temporal distribution of many biomolecules in tissues. Over the preceding decade, MSI has been adopted by plant biologists and applied in a broad range of areas, including primary metabolism, natural products, plant defense, plant responses to abiotic and biotic stress, plant lipids and the developing field of spatial metabolomics. This review covers recent advances in plant-based MSI, general aspects of instrumentation, analytical approaches, sample preparation and the current trends in respective plant research

    A large-NcN_c PNJL model with explicit ZNc_{N_c} symmetry

    Full text link
    A PNJL model is built, in which the Polyakov-loop potential is explicitly ZNc_{N_c}-symmetric in order to mimic a Yang-Mills theory with gauge group SU(NcN_c). The physically expected large-NcN_c and large-TT behaviours of the thermodynamic observables computed from the Polyakov-loop potential are used to constrain its free parameters. The effective potential is eventually U(1)-symmetric when NcN_c is infinite. Light quark flavours are added by using a Nambu-Jona-Lasinio (NJL) model coupled to the Polyakov loop (the PNJL model), and the different phases of the resulting PNJL model are discussed in 't Hooft's large-NcN_c limit. Three phases are found, in agreement with previous large-NcN_c studies. When the temperature TT is larger than some deconfinement temperature TdT_d, the system is in a deconfined, chirally symmetric, phase for any quark chemical potential μ\mu. When T<TdT<T_d however, the system is in a confined phase in which chiral symmetry is either broken or not. The critical line Tχ(μ)T_\chi(\mu), signalling the restoration of chiral symmetry, has the same qualitative features than what can be obtained within a standard Nc=3N_c=3 PNJL model.Comment: To appear in Phys Rev

    Evaluation of 2.1µm DFB lasers for space applications

    Full text link
    This paper presents the results obtained in the frame of an ESA-funded project called “Screening and Preevaluation of Shortwave Infrared Laser Diode for Space Application” with the objective of verifying the maturity of state of the art SWIR DFB lasers at 2.1µm to be used for space applications (mainly based on the occultation measurement principle and spectroscopy). The paper focus on the functional and environmental evaluation test plan. It includes high precision characterization, mechanical test (vibration and SRS shocks), thermal cycling, gamma and proton radiation tests, life test and some details of the Destructive Physical Analysis performed. The electro-optical characterization includes measurements of the tuning capabilities of the laser both by current and by temperature, the wavelength stability and the optical power versus laser current

    A new peak detection algorithm for MALDI mass spectrometry data based on a modified Asymmetric Pseudo-Voigt model

    Get PDF
    Background: Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks in mass spectra. It uses dual-tree complex wavelet transformation along with Stein's unbiased risk estimator for spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and hierarchical particle swarm optimization, is used for peak parameter estimation. Results: Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46% less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition, using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to 77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell respectively. Conclusions: The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the source code is freely available at http://mapv.sourceforge.net

    Insights into oxidized lipid modification in barley roots as an adaptation mechanism to salinity stress

    Get PDF
    Lipidomics is an emerging technology, which aims at the global characterization and quantification of lipids within biological matrices including biofluids, cells, whole organs and tissues. The changes in individual lipid molecular species in stress treated plant species and different cultivars can indicate the functions of genes affecting lipid metabolism or lipid signaling. Mass spectrometry–based lipid profiling has been used to track the changes of lipid levels and related metabolites in response to salinity stress. We have developed a comprehensive lipidomics platform for the identification and direct qualification and/or quantification of individual lipid species, including oxidized lipids, which enables a more systematic investigation of peroxidation of individual lipid species in barley roots under salinity stress. This new lipidomics approach has improved with an advantage of analyzing the composition of acyl chains at the molecular level, which facilitates to profile precisely the 18:3-containing diacyl-glycerophosphates and allowed individual comparison of lipids across varieties. Our findings revealed a general decrease in most of the galactolipids in plastid membranes, and an increase of glycerophospholipids and acylated steryl glycosides, which indicate that plastidial and extraplastidial membranes in barley roots ubiquitously tend to form a hexagonal II (HII) phase under salinity stress. In addition, salt-tolerant and salt-sensitive cultivars showed contrasting changes in the levels of oxidized membrane lipids. These results support the hypothesis that salt-induced oxidative damage to membrane lipids can be used as an indication of salt stress tolerance in barley

    A high-resolution HPLC-QqTOF platform using parallel reaction monitoring for in-depth lipid discovery and rapid profiling

    Get PDF
    Here, we developed a robust lipidomics workflow merging both targeted and untargeted approaches on a single liquid chromatography coupled to quadrupole-time of flight (LC-QqTOF) mass spectrometry platform with parallel reaction monitoring (PRM). PRM assays integrate both untargeted profiling from MS1 scans and targeted profiling obtained from MS/MS data. This workflow enabled the discovery of more than 2300 unidentified features and identification of more than 600 lipid species from 23 lipid classes at the level of fatty acid/long chain base/sterol composition in a barley root extracts. We detected the presence of 142 glycosyl inositol phosphorylceramides (GIPC) with HN(Ac)-HA as the core structure of the polar head, 12 cardiolipins and 17 glucuronosyl diacylglycerols (GlcADG) which have been rarely reported previously for cereal crops. Using a scheduled algorithm with up to 100 precursors multiplexed per duty cycle, the PRM assay was able to achieve a rapid profiling of 291 species based on MS/MS data by a single injection. We used this novel approach to demonstrate the applicability and efficiency of the workflow to study salt stress induced changes in the barley root lipidome. Results show that 221 targeted lipids and 888 unknown features were found to have changed significantly in response to salt stress. This combined targeted and untargeted single workflow approach provides novel applications of lipidomics addressing biological questions

    Subliminal and supraliminal processing of reward-related stimuli in anorexia nervosa

    Get PDF
    Background. Previous studies have highlighted the role of the brain reward and cognitive control systems in the etiology of anorexia nervosa (AN). In an attempt to disentangle the relative contribution of these systems to the disorder, we used functional magnetic resonance imaging (fMRI) to investigate hemodynamic responses to reward-related stimuli presented both subliminally and supraliminally in acutely underweight AN patients and age-matched healthy controls (HC). Methods. fMRI data were collected from a total of 35 AN patients and 35 HC, while they passively viewed subliminally and supraliminally presented streams of food, positive social, and neutral stimuli. Activation patterns of the group Ă— stimulation condition Ă— stimulus type interaction were interrogated to investigate potential group differences in processing different stimulus types under the two stimulation conditions. Moreover, changes in functional connectivity were investigated using generalized psychophysiological interaction analysis. Results. AN patients showed a generally increased response to supraliminally presented stimuli in the inferior frontal junction (IFJ), but no alterations within the reward system. Increased activation during supraliminal stimulation with food stimuli was observed in the AN group in visual regions including superior occipital gyrus and the fusiform gyrus/parahippocampal gyrus. No group difference was found with respect to the subliminal stimulation condition and functional connectivity. Conclusion. Increased IFJ activation in AN during supraliminal stimulation may indicate hyperactive cognitive control, which resonates with clinical presentation of excessive self-control in AN patients. Increased activation to food stimuli in visual regions may be interpreted in light of an attentional food bias in AN
    • …
    corecore