106 research outputs found

    III-V on-silicon sources for optical interconnect applications

    Get PDF
    Optical interconnects require efficient and flexible optical sources. This paper presents results on two technology platforms being developed for realizing these. Integration using wafer bonding technologies is well established now and the focus is on new device types including tunable lasers, multi-wavelength lasers and switching. As an alternative, we also started work on monolithic integration using heteroepitaxy directly on silicon. We here report recent results on low threshold nanowire lasers

    Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser

    Get PDF
    A heterogeneously integrated III-V-on-silicon laser is reported, integrating a III-V gain section, a silicon ring resonator for wavelength selection and two silicon Bragg grating reflectors as back and front mirrors. Single wavelength operation with a side mode suppression ratio higher than 45 dB is obtained. An output power up to 10 mW at 20 °C and a thermo-optic wavelength tuning range of 8 nm are achieved. The laser linewidth is found to be 1.7 MHz

    Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler

    Get PDF
    We report on a heterogeneously integrated InP/silicon-on-insulator (SOI) laser source realized through divinylsiloxane-bis-benzocyclobutene (DVS-BCB) wafer bonding. The hybrid lasers present several new features. The III-V waveguide has a width of only 1.7 mu m, reducing the power consumption of the device. The silicon waveguide thickness is 400 nm, compatible with high-performance modulator designs and allowing efficient coupling to a standard 220-nm high index contrast silicon waveguide layer. In order to make the mode coupling efficient, both the III-V waveguide and silicon waveguide are tapered, with a tip width for the III-V waveguide of around 800 nm. These new features lead to good laser performance: a lasing threshold as low as 30 mA and an output power of more than 4 mW at room temperature in continuous-wave operation regime. Continuous wave lasing up to 70 degrees C is obtained

    Integration of a III-V light emitter on a silicon photonic IC through transfer printing

    Get PDF
    For the first time, III-V opto-electronic components are coupled to silicon waveguide circuits using transfer-printing. Efficient III-V material usage is enabled in silicon photonics by providing III-V only where needed. We present transfer-printed single-spatial-mode LEDs coupling to silicon-on-insulator waveguides as first examples of this technology
    corecore