30,981 research outputs found

    The Gremlin Graph Traversal Machine and Language

    Full text link
    Gremlin is a graph traversal machine and language designed, developed, and distributed by the Apache TinkerPop project. Gremlin, as a graph traversal machine, is composed of three interacting components: a graph GG, a traversal Ψ\Psi, and a set of traversers TT. The traversers move about the graph according to the instructions specified in the traversal, where the result of the computation is the ultimate locations of all halted traversers. A Gremlin machine can be executed over any supporting graph computing system such as an OLTP graph database and/or an OLAP graph processor. Gremlin, as a graph traversal language, is a functional language implemented in the user's native programming language and is used to define the Ψ\Psi of a Gremlin machine. This article provides a mathematical description of Gremlin and details its automaton and functional properties. These properties enable Gremlin to naturally support imperative and declarative querying, host language agnosticism, user-defined domain specific languages, an extensible compiler/optimizer, single- and multi-machine execution models, hybrid depth- and breadth-first evaluation, as well as the existence of a Universal Gremlin Machine and its respective entailments.Comment: To appear in the Proceedings of the 2015 ACM Database Programming Languages Conferenc

    High–Speed Data Transmission Subsystem of the SEOSAR/PAZ Satellite

    Get PDF
    This paper analyzes a digital interface and bus system modeling and optimization of the SEOSAR/PAZ Earth Observation satellite. The important part of the satellite is an X–band Synthetic Aperture Radar instrument that integrates 384 Transmit/Receive Modules located in 12 antenna panels 7.5 m away from the central processor and controlled by a synchronous 10 Mbps bidirectional serial protocol. This type of mid–range point–to–multipoint transmission is affected by bit errors due to crosstalk, transmission line attenuation and impedance mismatches. The high–speed data communication network has been designed to optimize the transmission by using a simulation model of the data distribution system which takes into account the worst–case scenario and by developing a lab–scaled prototype which exhibits BER of 10-11 for an interfering signal of 10 Vpp. The result is a point–to–multipoint bidirectional transmission network optimized in both directions with optimal values of loads and equalization resistors. This high–speed data transmission subsystem provides a compact design through a simple solution

    Functional advantages offered by many-body coherences in biochemical systems

    Full text link
    Quantum coherence phenomena driven by electronic-vibrational (vibronic) interactions, are being reported in many pulse (e.g. laser) driven chemical and biophysical systems. But what systems-level advantage(s) do such many-body coherences offer to future technologies? We address this question for pulsed systems of general size N, akin to the LHCII aggregates found in green plants. We show that external pulses generate vibronic states containing particular multipartite entanglements, and that such collective vibronic states increase the excitonic transfer efficiency. The strength of these many-body coherences and their robustness to decoherence, increase with aggregate size N and do not require strong electronic-vibrational coupling. The implications for energy and information transport are discussed.Comment: arXiv admin note: text overlap with arXiv:1706.0776

    Pulsed Generation of Quantum Coherences and Non-classicality in Light-Matter Systems

    Get PDF
    We show that a pulsed stimulus can be used to generate many-body quantum coherences in light-matter systems of general size. Specifically, we calculate the exact real-time evolution of a driven, generic out-of-equilibrium system comprising an arbitrary number N qubits coupled to a global boson field. A novel form of dynamically-driven quantum coherence emerges for general N and without having to access the empirically challenging strong-coupling regime. Its properties depend on the speed of the changes in the stimulus. Non-classicalities arise within each subsystem that have eluded previous analyses. Our findings show robustness to losses and noise, and have potential functional implications at the systems level for a variety of nanosystems, including collections of N atoms, molecules, spins, or superconducting qubits in cavities -- and possibly even vibration-enhanced light harvesting processes in macromolecules.Comment: 9 pages, 4 figure

    Discovery of a new INTEGRAL source: IGR J19140+0951

    Full text link
    IGR J19140+0951 (formerly known as IGR J19140+098) was discovered with the INTEGRAL satellite in March 2003. We report the details of the discovery, using an improved position for the analysis. We have performed a simultaneous study of the 5-100 keV JEM-X and ISGRI spectra from which we can distinguish two different states. From the results of our analysis we propose that IGR J19140+0951 is a persistent Galactic X-ray binary, probably hosting a neutron star although a black hole cannot be completely ruled out.Comment: 4 pages, 4 figures. Accepted for publication in A&A
    • …
    corecore