12,123 research outputs found

    Micro-abrasion resistance of thermochemically treated steels in aqueous solutions: Mechanisms, maps, materials selection

    Get PDF
    The area of micro-abrasion is an interesting and relatively recent area in tribo-testing methodologies, where small particles of less than 10 μm are employed between interacting surfaces. It is topical for a number of reasons; its direct relation to the mechanisms of the wear process in bio-tribological applications, ease in conducting tests and the good repeatability of the test results. It has widespread applications in conditions used in the space and offshore industries to bio-engineering for artificial joints and implants. There have been many recent studies on the micro-abrasion performance of materials, ranging from work basic metals to nano-structured coatings. However, no significant work is reported on the micro-abrasion resistance of thermochemically treated steels. Hence, this paper looks at the performance of two thermochemically treated steels, Tenifer bath nitride stainless steel (T-SS) and vanadized carbon steel (V-CS) in such conditions with reference to the stainless steel (SS) by varying the applied load and sliding distance. The results indicated that T-SS demonstrates exceptionally poor resistance to micro-abrasion. It was observed that the heat treatment process and properties of the hardened layer (hardness and thickness) are extremely important in determining the micro-abrasion resistance of such steels. Finally, the results were used to develop micro-abrasion mechanism and wastage maps, which can be used to optimize the surface treated materials for micro-abrasion resistance

    Chemical Evolution of the Galaxy Based on the Oscillatory Star Formation History

    Get PDF
    We model the star formation history (SFH) and the chemical evolution of the Galactic disk by combining an infall model and a limit-cycle model of the interstellar medium (ISM). Recent observations have shown that the SFH of the Galactic disk violently variates or oscillates. We model the oscillatory SFH based on the limit-cycle behavior of the fractional masses of three components of the ISM. The observed period of the oscillation (1\sim 1 Gyr) is reproduced within the natural parameter range. This means that we can interpret the oscillatory SFH as the limit-cycle behavior of the ISM. We then test the chemical evolution of stars and gas in the framework of the limit-cycle model, since the oscillatory behavior of the SFH may cause an oscillatory evolution of the metallicity. We find however that the oscillatory behavior of metallicity is not prominent because the metallicity reflects the past integrated SFH. This indicates that the metallicity cannot be used to distinguish an oscillatory SFH from one without oscillations.Comment: 21 pages LaTeX, to appear in Ap

    Topological insulator particles as optically induced oscillators: towards dynamical force measurements and optical rheology

    Full text link
    We report the first experimental study upon the optical trapping and manipulation of topological insulator (TI) particles. By virtue of the unique TI properties, which have a conducting surface and an insulating bulk, the particles present a peculiar behaviour in the presence of a single laser beam optical tweezers: they oscillate in a plane perpendicular to the direction of the laser propagation, as a result of the competition between radiation pressure and gradient forces. In other words, TI particles behave as optically induced oscillators, allowing dynamical measurements with unprecedented simplicity and purely optical control. Actually, optical rheology of soft matter interfaces and biological membranes, as well as dynamical force measurements in macromolecules and biopolymers, may be quoted as feasible possibilities for the near future.Comment: 6 pages, 5 figures. Correspondence and requests for Supplementary Material should be addressed to [email protected]

    Optical spectrum of bottom-up graphene nanoribbons: towards efficient atom-thick excitonic solar cells

    Full text link
    Recently, atomically well-defined cove-shaped graphene nanoribbons have been obtained using bottom-up synthesis. These nanoribbons have an optical gap in the visible range of the spectrum which make them candidates for donor materials in photovoltaic devices. From the atomistic point of view, their electronic and optical properties are not clearly understood. Therefore, in this work we carry out ab-initio density functional theory calculations combine with many-body perturbation formalism to study their electronic and optical properties. Through the comparison with experimental measurements, we show that an accurate description of the nanoribbon's optical properties requires the inclusion of electron-hole correlation effects. The energy, binding energy and the corresponding excitonic transitions involved are analyzed. We found that in contrast to zigzag graphene nanoribbons, the excitonic peaks in the absorption spectrum are a consequence of a group of transitions involving the first and second conduction and valence bands. Finally, we estimate some relevant optical properties that strengthen the potential of these nanoribbons for acting as a donor materials in photovoltaic

    Influence of adhesive stiffness on the post-cracking behaviour of CFRP-reinforced structural glass beams

    Get PDF
    Reinforcement strategies have been developed to prevent catastrophic failures of glass structures after cracking. In this context, the composite action between glass and reinforcement plays a crucial role in the post-cracking performance of glass composite systems. Hence, this paper presents an experimental and numerical investigation on glass-CFRP composite beams manufactured using three different adhesives, with high, intermediate and low stiffness. The experimental programme comprised (i) mechanical characterization tests, (ii) tensile tests on double-lap joints and (iii) flexural tests on composite beams. Moreover, numerical simulations were carried out aiming at providing reliable numerical tools for the design of glass structural elements. Bending tests have shown that it is possible to obtain ductile failure modes in glass elements reinforced with CFRP laminates, sometimes attaining or surpassing the cracking load during the post-cracking phase, depending on the type of adhesive. On the other hand, glass-CFRP composite beams manufactured with stiff, moderate and flexible adhesives were well simulated (i) neglecting the physical existence of the adhesive layer, (ii) assuming the linear elastic behaviour of the adhesive, and (iii) modelling the bond behaviour of the adhesive joint, respectively.This work is financed by the national funds through Fundação para a Ciência e a Tecnologia, IP (FCT), under the grant agreement [SFRH/BD/122428/2016] attributed to the 1st author. This work was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020
    corecore