1,008 research outputs found

    A realist evaluation of an enhanced court‐based liaison and diversion service for defendants with neurodevelopmental disorders

    Get PDF
    Background In England, court-based mental health liaison and diversion (L&D) services work across courts and police stations to support those with severe mental illness and other vulnerabilities. However, the evidence around how such services support those with neurodevelopmental disorders (NDs) is limited. Aims This study aimed to evaluate, through the lens of court and clinical staff, the introduction of a L&D service for defendants with NDs, designed to complement the existing L&D service. Methods A realist evaluation was undertaken involving multiple agencies based within an inner-city Magistrates' Court in London, England. We developed a logic model based on the initial programme theory focusing on component parts of the new enhanced service, specifically training, screening, signposting and interventions. We conducted semi-structured interviews with the court staff, judiciary and clinicians from the L&D service. Results The L&D service for defendants with NDs was successful in identifying and supporting the needs of those defendants. Benefits of this service included knowledge sharing, awareness raising and promoting good practice such as making reasonable adjustments. However, there were challenges for the court practitioners and clinicians in finding and accessing local specialist community services. Conclusion A L&D service developed for defendants with NDs is feasible and beneficial to staff and clinicians who worked in the court setting leading to good practice being in place for the defendants. Going forward, a local care pathway would need to be agreed between commissioners and stakeholders including the judiciary to ensure timely and equitable access to local services by both defendants and practitioners working across diversion services for individuals with NDs

    Stevin numbers and reality

    Full text link
    We explore the potential of Simon Stevin's numbers, obscured by shifting foundational biases and by 19th century developments in the arithmetisation of analysis.Comment: 22 pages, 4 figures. arXiv admin note: text overlap with arXiv:1104.0375, arXiv:1108.2885, arXiv:1108.420

    YREC: The Yale Rotating Stellar Evolution Code

    Get PDF
    The stellar evolution code YREC is outlined with emphasis on its applications to helio- and asteroseismology. The procedure for calculating calibrated solar and stellar models is described. Other features of the code such as a non-local treatment of convective core overshoot, and the implementation of a parametrized description of turbulence in stellar models, are considered in some detail. The code has been extensively used for other astrophysical applications, some of which are briefly mentioned at the end of the paper.Comment: 10 pages, 2 figures, ApSS accepte

    Optical and X-ray correlations during the 2015 outburst of the black hole V404 Cyg

    Get PDF
    We present a serendipitous multiwavelength campaign of optical photometry simultaneous with Integral X-ray monitoring of the 2015 outburst of the black hole V404 Cyg. Large-amplitude optical variability is generally correlated with X-rays, with lags of order a minute or less compatible with binary light travel time-scales or jet ejections. Rapid optical flaring on time-scales of seconds or less is incompatible with binary light-travel time-scales and has instead been associated with synchrotron emission from a jet. Both this rapid jet response and the lagged and smeared one can be present simultaneously. The optical brightness is not uniquely determined by the X-ray brightness, but the X-ray/optical relationship is bounded by a lower envelope such that at any given optical brightness there is a maximum X-ray brightness seen. This lower envelope traces out a Fopt∝F0.54X relation that can be approximately extrapolated back to quiescence. Rapid optical variability is only seen near this envelope, and these periods correspond to the hardest hard X-ray colours. This correlation between hard X-ray colour and optical variability (and anticorrelation with optical brightness) is a novel finding of this campaign, and apparently a facet of the outburst behaviour in V404 Cyg. It is likely that these correlations are driven by changes in the central accretion rate and geometry

    Is the evidence for dark energy secure?

    Full text link
    Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann-Robertson-Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass 0.5 eV. Although such an Einstein-de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the `baryon acoustic oscillation' peak in the autocorrelation function of galaxies, it may be possible to do so e.g. in an inhomogeneous Lemaitre-Tolman-Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.Comment: 12 pages, 5 figures; to appear in a special issue of General Relativity and Gravitation, eds. G.F.R. Ellis et al; Changes: references reformatted in journal style - text unchange

    Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics

    Get PDF
    A framework is introduced which explains the existence and similarities of most exact solutions of the Einstein equations with a wide range of sources for the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian formulation. This class includes the spatially homogeneous cosmological models and the astrophysically interesting static spherically symmetric models as well as the stationary cylindrically symmetric models. The framework involves methods for finding and exploiting hidden symmetries and invariant submanifolds of the Hamiltonian formulation of the field equations. It unifies, simplifies and extends most known work on hypersurface-homogeneous exact solutions. It is shown that the same framework is also relevant to gravitational theories with a similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for publication in Phys. Rev.

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g

    Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior

    Full text link
    Recent overwhelming evidences show that the sun strongly influences the Earth's climate and environment. Moreover existence of life on this Earth mainly depends upon the sun's energy. Hence, understanding of physics of the sun, especially the thermal, dynamic and magnetic field structures of its interior, is very important. Recently, from the ground and space based observations, it is discovered that sun oscillates near 5 min periodicity in millions of modes. This discovery heralded a new era in solar physics and a separate branch called helioseismology or seismology of the sun has started. Before the advent of helioseismology, sun's thermal structure of the interior was understood from the evolutionary solution of stellar structure equations that mimicked the present age, mass and radius of the sun. Whereas solution of MHD equations yielded internal dynamics and magnetic field structure of the sun's interior. In this presentation, I review the thermal, dynamic and magnetic field structures of the sun's interior as inferred by the helioseismology.Comment: To be published in the proceedings of the meeting "3rd International Conference on Current Developments in Atomic, Molecular, Optical and Nano Physics with Applications", December 14-16, 2011, New Delhi, Indi
    • 

    corecore