1,671 research outputs found

    Diurnal Cycle in Different Weather Regimes and Rainfall Variability over Borneo Associated with ENSO

    Get PDF
    The interannual variability of precipitation over the island of Borneo in association with El Niño–Southern Oscillation (ENSO) has been studied by using the Global Precipitation Climatology Centre (GPCC) gridded rain gauge precipitation, the NOAA Climate Prediction Center (CPC) Morphing Technique (CMORPH) satellite estimated precipitation, the Quick Scatterometer (QuikSCAT) satellite estimated sea winds, and the National Centers for Environmental Prediction (NCEP)–National Center for Atmospheric Research (NCAR) reanalysis data. Analysis of the GPCC precipitation shows a dipolar structure of wet southwest versus dry central and northeast in precipitation anomalies associated with El Niño over Borneo Island during the austral summer [December–February (DJF)]. By using the 0.25° and 3-hourly CMORPH precipitation, it is found that rainfall over Borneo is strongly affected by the diurnal cycle of land–sea breezes. The spatial distribution of rainfall over Borneo depends on the direction of monsoonal winds. Weather typing analysis indicates that the dipolar structure of rainfall anomalies associated with ENSO is caused by the variability in the frequency of occurrence of different weather types. Rainfall is enhanced in the coastal region where sea breezes head against off-shore synoptic-scale low-level winds (i.e., in the lee side or wake area of the island), which is referred to here as the “wake effect.” In DJF of El Niño years, the northwesterly austral summer monsoon in southern Borneo is weaker than normal over the Maritime Continent and easterly winds are more frequent than normal over Borneo, acting to enhance rainfall over the southwest coast of the island. This coastal rainfall generation mechanism in different weather types explains the dipole pattern of a wet southwest versus dry northeast in the rainfall anomalies over Borneo Island in the El Niño years

    Multiple Regimes and Low-Frequency Oscillations in the Northern Hemisphere’s Zonal-Mean Flow

    Get PDF
    This paper studies multiple regimes and low-frequency oscillations in the Northern Hemisphere zonal-mean zonal flow in winter, using 55 yr of daily observational data. The probability density function estimated in the phase space spanned by the two leading empirical orthogonal functions exhibits two distinct, statistically significant maxima. The two regimes associated with these maxima describe persistent zonal-flow states that are characterized by meridional displacements of the midlatitude jet, poleward and equatorward of its time-mean position. The geopotential height anomalies of either regime have a pronounced zonally symmetric component, but largest-amplitude anomalies are located over the Atlantic and Pacific Oceans. High-frequency synoptic transients participate in the maintenance of and transitions between these regimes. Significant oscillatory components with periods of 147 and 72 days are identified by spectral analysis of the zonal-flow time series. These oscillations are described by singular spectrum analysis and the multitaper method. The 147-day oscillation involves zonal-flow anomalies that propagate poleward, while the 72-day oscillation only manifests northward propagation in the Atlantic sector. Both modes mainly describe changes in the midlatitude jet position and intensity. In the horizontal plane though, the two modes exhibit synchronous centers of action located over the Atlantic and Pacific Oceans. The two persistent flow regimes are associated with slow phases of either oscillation
    • 

    corecore