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ABSTRACT

The characteristics of subseasonal circulation variability over the South Pacific are examined using 10-day
lowpass-filtered 700-hPa geopotential height NCEP–NCAR reanalysis data. The extent to which the variability
in each season is characterized by recurrent geographically fixed circulation regimes and/or oscillatory behavior
is determined. Two methods of analysis (a K-means cluster analysis and a cross-validated Gaussian mixture
model) both indicate three to four geographically fixed circulation regimes in austral fall, winter, and (to some
extent) spring. The spatial regime structures are found to be quite similar in each season; they resemble the so-
called Pacific–South American (PSA) patterns discussed in previous studies and often referred to as PSA 1 and
PSA 2. Oscillatory behavior is investigated using singular spectrum analysis. This identifies a predominantly
stationary wave with a period of about 40 days and a spatial structure similar to PSA 1; it is most pronounced
in winter and spring and exhibits a noticeable eastward drift as it decays. The power spectrum of variability is
otherwise well approximated by a red spectrum, together with enhanced broader-band 15–30-day variability.

The results presented herein indicate that low-frequency variability over the South Pacific is not dominated
by a propagating wave whose quadrature phases are PSA 1 and PSA 2, as hitherto described. Rather, it is found
that the variability is well described by the occurrence of three to four geographically fixed circulation regimes,
with a (near) 40-day oscillation that is predominantly stationary in space. The potential subseasonal predictability
implied by this duality is discussed. Only during austral spring is a strong correlation found between El Niño
and the frequency of occurrence of the circulation regimes.

1. Introduction

Two distinct approaches have been used to study the
‘‘coarse grain’’ structure of atmospheric low-frequency
variability (10 , T , 100 day): the episodic or inter-
mittent and the oscillatory or periodic. Ghil and Rob-
ertson (2002) have reviewed studies of the Northern
Hemisphere in these terms. The intermittency approach
describes geographically fixed multiple-flow (or weath-
er) regimes, their persistence and recurrence, and the
Markov chain of transitions between them. The peri-
odicity approach studies intraseasonal oscillations and
their predictability. Plaut and Vautard (1994) described
low-frequency variability in the Northern Hemisphere
midlatitudes in terms of oscillatory phenomena as well
as in terms of flow regimes defined by the most fre-
quently occurring patterns. Their results reveal both os-
cillatory and episodic features. For example, they found
that a Euro–Atlantic blocking regime is strongly favored
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by, although not systematically associated with, a par-
ticular phase of a 30–35-day oscillatory component.
This type of relationship has potentially important prac-
tical implications due to the higher inherent predict-
ability of oscillatory behavior.

The extratropical circulation of the Southern Hemi-
sphere, being much more zonally symmetric than that
of the Northern Hemisphere, is deceptively simpler. A
closer look hints at a higher complexity since the var-
iance spectrum of empirical orthogonal functions
(EOFs) is flatter and the leading modes are characterized
by higher zonal wavenumbers, thus suggesting a system
with a higher number of degrees of freedom (Ghil and
Mo 1991). The leading EOFs of low-frequency vari-
ability constructed over the entire Southern Hemisphere
consist of a high-latitude vacillation in the strength of
the polar vortex and Rossby wave trains over the South
Pacific (Kidson 1988). Mo and Ghil (1987) identified a
wave-train-like pattern arching poleward from the sub-
tropical central Pacific to Argentina, and then refracting
equatorward into the Atlantic. Szeredi and Karoly
(1987a,b) identified a similar wave pattern, but with a
908 zonal phase lead. These wavelike ‘‘modes’’ have
since been referred to as Pacific–South American (PSA)
patterns, numbers 1 and 2, respectively. PSA 1 and 2
are reproduced well by the two leading EOFs of low-
frequency variability over a domain restricted to the
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FIG. 1. Leading two EOFs of 10-day low-pass-filtered 700-hPa
geopotential heights for 1958–99, computed over the South Pacific
sector with the mean seasonal cycle subtracted. Shown are hemi-
spheric maps of regression coefficients with the respective PC time
series. Amplitudes correspond to 1 std dev of the PC, with each PC’s
variance given (in %). Contour interval: 10 gpm.

South Pacific extratropics (see Fig. 1). The nomencla-
ture is motivated by analogy with the Pacific–North
American pattern in the Northern Hemisphere (e.g.,
Wallace and Gutzler 1981).

The spatial phase-quadrature relationship between
PSA 1 and 2, together with their near-degeneracy in
EOF analyses, suggest a propagating wave. In an anal-
ysis of 200-hPa streamfunction, Mo and Higgins (1998)
have reported evidence during austral winter from lag
correlations and singular spectrum analysis (SSA) that
PSA 1 and 2 represent an eastward-propagating wave
with a period of about 40 days. They also argued that
forcing over the western tropical Pacific can create a
favorable situation for a particular phase of the PSA
modes to strengthen. Low-frequency variability in the
Southern Hemisphere is also episodic in nature (Mo
1986). Mo and Ghil (1987) studied quasi-stationary
events in the Southern Hemisphere using daily 500-hPa
geopotential maps during 1972–83 and found two types
of geographically fixed persistent anomalies, both with
a strong zonal wavenumber 3 component and strongly
resembling the two leading EOFs in the dataset.

A non-dispersive propagating wave has no preferred
phase so that is unclear how the PSA patterns can si-
multaneously be described as quadrature phases of a
propagating wave, and geographically fixed circulation
regimes. The aim of the present paper is to explore
systematically the episodic/intermittent and oscillatory/
periodic characteristics of the PSA modes, and to extend
the work of Mo and coworkers to all four seasons. We
examine the evidence for circulation regimes as well as
low-frequency oscillations over the South Pacific sector
from the National Centers for Environmental Predic-
tion–National Center for Atmospheric Research
(NCEP–NCAR) reanalysis data, and investigate their
seasonal dependence. We apply three analysis methods
to the 700-hPa geopotential height dataset: a K-means
clustering and Gaussian mixture model, as well as mul-
tichannel SSA (MSSA). We then assess any relation-
ships between the circulation regimes and oscillatory
behavior that could lead to predictability of the former.
All three methods use conventional EOF analysis only
as a means of data reduction, thereby circumventing the
potential problem of near-degeneracy of PSA 1 and 2
when defined in terms of the leading EOFs, which may
complicate the physical interpretation of either one.

The paper is organized as follows. In section 2 we
describe the dataset and preprocessing steps. Section 3
contains the regime analysis for each of the four con-
ventional 3-month meteorological seasons. In section 4
we use MSSA to isolate oscillatory behavior and discuss
its relationships with the clusters in section 5. This is
followed by the conclusions in section 6.

2. Data and preprocessing

All analyses in this paper are restricted to the South
Pacific sector 208–908S, 1508E–608W. We use daily 700-

hPa geopotential heights from the NCEP–NCAR re-
analysis dataset for 1948–99 (Kalnay et al. 1996). The
lower-tropospheric geopotential is chosen so as to em-
phasize the midlatitude circulation where 700 hPa cor-
responds to an approximate ‘‘steering level’’ (Blackmon
et al. 1984). Data are very sparse in much of the domain
of study, and a near-surface variable should be more
closely controlled by surface observations that predom-
inate. The reanalysis fields are on a 2.58 latitude–lon-
gitude grid, which was subsampled by omitting every
other point to yield a 58 3 58 resolution. The values
were preprocessed by low-pass filtering (Blackmon and
Lau 1980) at 10 days, followed by construction of the
leading EOFs using the covariance matrix, unweighted
by area. There is an error in the reanalysis dataset be-
tween 1979 and 1992 due to bogus Australian surface
pressure data, but its impact on low-pass-filtered data
is expected to be minimal (Mo and Higgins 1998).

For the regime analysis (section 3) we determine
EOFs separately for the December–February (summer,
DJF), March–May (fall, MAM), June–August (winter,
JJA), and September–November (spring, SON) seasons
during the 1948–99 interval, which provides the max-
imum sample size. For the oscillatory analysis (section
4), we constructed EOFs for the entire calendar year
during the period 1958–99, but with 1) the mean sea-
sonal cycle subtracted on a daily basis (after the low-
pass filtering), and 2) the interannual variability sup-
pressed by forming (deseasonalized) anomalies from an-
nual means.

The two leading EOFs from the latter year-round fil-
tered data are shown in Fig. 1 and compare closely with
the PSA patterns constructed by Mo and Higgins (1998)
from 500-hPa geopotentials for June–August. They ex-
plain comparable fractions of (low-pass filtered) vari-
ance (21.7% and 19.2%), and are well separated from
the higher-ranked EOFs (EOF 3 explains 12.5%). The
pairing between the first two empirical modes is less
clear in the individual seasons (in which interannual
variability was also retained). When interannual vari-
ability is retained, PSA 1 exhibits a zonally symmetric
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FIG. 2. Scatter of daily geopotential heights (Mar–May) projected
onto the PC 1/PC 2 plane, with every fifth point plotted. The solid
squares denote the positions of the three K means. The results of the
Gaussian mixture model are plotted in terms of its centroids (solid
circles) and covariance ellipses.

component over the pole, especially in summer. The
leading 10 EOFs account for more than 85% of the (low-
pass filtered) variance in all analyses.

3. Regime analysis

a. Number of regimes

To analyze low-frequency variability from the epi-
sodic point of view, we use primarily K-means cluster-
ing (MacQueen 1967). This is a straightforward and
widely used partitioning method that classifies all days
into a predefined set of K clusters, such as to minimize
the spread within them. The number of clusters must
be specified, but the sensitivity of the resulting centroids
to the choice of initial seeds and the data subsample can
be used as ad hoc criteria for assessing the validity of
the partitioning into distinct clusters (Michelangeli et
al. 1995). We performed the cluster analysis in the sub-
space of the leading 10 EOFs for each season in turn,
as described in appendix A.

To be most conservative, both robustness criteria are
applied together. The K-means method then indicates
multiple regimes in fall (K 5 3 or 5), spring (K 5 4),
and marginally in winter (K 5 3) (see Table A1). The
sensitivity to initial seeds is considerably higher in sum-
mer, suggesting that the regime description is less valid
then.

In order to obtain an independent measure of the ex-
tent to which the geopotential height data support the
existence of multiple stationary flow regimes, we have
also fitted a Gaussian mixture model to the probability
density function (PDF) in the EOF subspace. This meth-
od seeks to fit the PDF with a small number of Gaussian
components and enables a rigorous test for the existence
of multimodality, by estimating the cross-validated like-
lihood of a single Gaussian versus that of a mixture of
several. The methodology follows the work of Smyth
et al. (1999), and the details are given in appendix B.

In fall and winter, the mixture model indicates mul-
timodality with three to four Gaussians (Table B1), sup-
porting the results of the K-means method. Figure 2
shows the data scatter in the subspace of EOFs 1 and
2 for fall, together with the locations of the three Gaus-
sians. The positions of the three regime centroids given
by the mixture model (circles) agree closely with those
of the cluster analysis (squares). In summer the mixture
model indicates unimodality, which is consistent with
the much higher summertime sensitivity to initial seeds
in the K-means analysis. In spring, the K-means analysis
selects K 5 4 while the mixture model indicates uni-
modality. We will return to this apparent contradiction
in section 6.

Based on the above results, the regime description of
low-frequency variability over the South Pacific is well
justified in fall and winter, somewhat less certain in
spring, and probably not applicable in summer. For par-
simony, in what follows we will consider the case of K

5 3 for fall, winter, and spring, basing our analysis on
the K-means results. Although the spring values in ap-
pendix A (Table A1) suggest that K 5 4 is more ap-
propriate, three of the cluster centroids obtained in
spring are almost indistinguishable from those in winter
when K 5 3 (the pattern correlation between the re-
spective centroids exceeds 0.97), while the fourth cen-
troid is less robust between the seasons.

b. Spatial structures and regime transitions

Figure 3 shows hemispheric geopotential height
anomaly composites for each of the three clusters for
fall, winter, and spring. In all three seasons the regimes
exhibit PSA-like patterns, characterized by meridionally
elongated tripole Rossby wave patterns (Berbery et al.
1992). Regimes 1 and 3 resemble opposite polarities of
EOF 1 although they are slightly phase-shifted, while
regime 2 resembles EOF 2 (Fig. 1). The cluster analysis
does not, however, simply select each polarity of the
EOFs, as is clear from the off-axis positions of the cen-
troids in Fig. 2, which represent a linear combination
of EOF 1 and 2. Thus, EOF 1 can be viewed as the
single spatial pattern that maximizes the variance con-
tained in regimes 1 and 3.

For regime durations beyond a few days, the cumu-
lative frequency distribution of residence times in each
regime follows approximately a geometric distribution
(not shown), similar to the findings of Dole and Gordon
(1983) and Kimoto and Ghil (1993) in the Northern
Hemisphere. Thus, the duration of events can be ap-
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FIG. 3. Regime composites of 700-hPa geopotential height obtained from the K-means analysis of the
South Pacific sector for each season, 1948–99. Contour interval: 10 gpm. Negative anomalies are shaded.

proximated by a first-order Markov chain. The com-
posites in Fig. 3 are ordered in terms of the their most
frequently occurring transitions, so that the ‘‘circuit’’ 1
⇒ 2 ⇒ 3 ⇒ 1 is the preferred temporal ordering. This
progression of spatial patterns suggests an eastward
propagation. Simple counts of the number of times this
eastward-propagating circuit occurs, compared to the
opposite westward-propagating one (1 ⇒ 3 ⇒ 2 ⇒ 1),
are tabulated in Table 1. In each season the eastward-
propagating circuit is more frequent than the reverse,
but not dramatically so. The third row of Table 1 gives
the degree of asymmetry (a) in the transition matrices,
where a value of a 5 2 means that transitions are twice
as likely to have a preferred direction in time, while a
5 1 denotes equal likelihood of direction. The tendency
toward propagation is strongest in spring with a rough
estimate of the period of 30 days given by summing the
average regime durations. This apparent propagation
motivates the analysis in section 4 where we take an
oscillatory approach to analyzing low-frequency vari-
ability over the South Pacific sector.

The results in this section were checked a posteriori

for any severe long-term trends and large seasonal var-
iation in the frequency of regime occurrence. No large
long-terms trends were found. The largest within-season
variations in regime membership (averaged across the
51 yr in the dataset) have a magnitude of about a factor
of 2, despite the rather similar regime spatial structures
seen in different seasons.

4. Low-frequency oscillations

In this section we examine the oscillatory components
of the 700-hPa geopotential height over the South Pa-
cific, considering the whole calendar year but with the
seasonal cycle subtracted. We begin by computing the
year-round subannual EOFs using low-pass-filtered data
(Fig. 1), as described in section 2. Next, 5-day averages
of unfiltered data, with the mean seasonal cycle sub-
tracted are projected onto these EOFs to give pseudo–
principal component time series (referred to simply as
the PCs in the following). Thus, in effect, we use the
leading EOFs of low-frequency variability as ‘‘spatial
filters’’ to focus on the low-frequency structures while
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TABLE 1. Number of transitions that belongs to each temporal ‘‘cir-
cuit,’’ and the average asymmetry in the transition matrix, defined
by the arithmetic average of the ratios of the off-diagonal elements.

MAM JJA SON

W → E
1 → 2 → 3 → 1 275 266 315

E → W
1 → 3 → 2 → 1 218 184 185
Transition matrix
asymmetry (a) 1.29 1.45 1.70

FIG. 5. Spectral analysis of pseudo-PC 2. Details as in Fig. 4.

FIG. 4. Spectral analysis of pseudo-PC 1. (a) SSA spectrum com-
puted with M 5 40 5-day means. The error bars give the 95% con-
fidence interval of a red noise process fitted to the time series. (b)
MTM spectrum computed with 39 tapers. The background curves
denote the 50%, 95%, and 99% thresholds of a red noise null hy-
pothesis. Periodicities of interest are given above each spectrum (in
days). The SSA used a window of M 5 40 5-day means (an ap-
proximate spectral resolution of 0.0040 cpd). For MTM, 39 tapers
were used yielding a half-bandwidth spectral resolution of 0.0013
cpd.

retaining the full temporal spectrum. Finally, singular
spectrum analysis (SSA and M-SSA) is applied to these
time series, using the University of California, Los An-
geles (UCLA), SSA–multi taper method (MTM) Toolkit
(Dettinger et al. 1995; Ghil et al. 2002).

We begin with a univariate analysis, and apply SSA
to PCs 1 and 2 (i.e., the time series of the PSA 1 and
2 patterns plotted in Fig. 1) in turn. For an independent
spectral estimate we also compute the MTM spectra.
Figure 4 shows the SSA and MTM spectra for PC 1,
with statistical significance estimated against the null
hypothesis of red noise, using the tests of Allen and
Smith (1996) for SSA and Mann and Lees (1996) for

MTM. Both spectra have a long-term ‘‘trend’’ compo-
nent. This is probably due to interannual variability as-
sociated with ENSO’s influence on PSA 1 (Karoly 1989;
Cazes-Boezio et al. 2003). The MTM spectrum exhibits
subseasonal peaks at periods of about 45, 36, 30, 20,
and 15 days (all significant at the 95% confidence level).
The SSA spectrum suggests oscillatory pairs of eigen-
values at 45, 31, 19, and 15 days, with the 45- and 31-
day components being the most statistically significant
though at a somewhat lower level than those identified
by MTM. The spectrum of PC 2 (Fig. 5) shows very
pronounced oscillatory components at 48, 22, and 15
days in both spectral estimates. Mo and Higgins (1998)
applied SSA to PSA time series derived from 200-hPa
streamfunction and reported common periods in PSA 1
and PSA 2 of 36–40, 22–25, and 16–18 days.

While the spectral peaks in PCs 1 and 2 have com-
parable periods, the respective spectra do not exhibit
strongly commensurate peaks that would indicate a
propagating wave, given the approximate spatial quad-
rature seen in EOFs 1 and 2. Indeed, the maximum lag
correlation between PCs 1 and 2 is only 0.14, and the
spectra in Figs. 4 and 5 indicate a red background with
rather modest oscillatory components superposed.

To avoid the potential problem of near degeneracy of
PCs 1 and 2 and to examine more closely the spatio-
temporal structure of the data, we next apply multi-
channel SSA to the leading six PC time series, thereby
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FIG. 6. Multichannel SSA of detrended pseudo-PCs 1–6, using M
5 20. (a) Eigenvalue rank spectrum, in % of total variance. (b) MEM
spectra (five poles) of the leading eight temporal PCs resulting from
the MSSA. The approximate periods are given above the curves. The
MSSA was applied using the full covariance matrix (Plaut and Vau-
tard 1994).

using the spatial EOF analysis only as a data reduction
tool. To focus on the intraseasonal band, variability with
timescales greater than 65 days was removed at the
outset using the SSA ‘‘detrending’’ procedure employed
by Robertson (1996), applied to each PC time series in
turn. Similar results were obtained using only PCs 1
and 2.

The multichannel analysis identifies the 45–50-day
component present in both the univariate analyses of
EOFs 1 and 2 with a period closer to 42 days, while
the behavior between 20 and 30 days appears to be more
broad band. Figure 6 shows the eigenvalue spectrum
and the power spectra of the leading eight temporal PCs
identified by multichannel SSA. The leading two ei-
genelements form an oscillatory pair with a period of
about 42 days. The next four eigenvalues are clustered
together and are associated with a broadband peak in

the temporal PCs with periods of 20–30 days; these are
followed by an oscillatory 18-day pair.

Each eigenelement of the MSSA is associated with
an evolving spatiotemporal structure, such that the sum
of all reconstructs the original dataset. The reconstructed
contribution of the 42-day pair is illustrated in Fig. 7.
The time series of channels 1 and 2 (i.e., PSA 1 and 2)
are plotted in Fig. 7a over the 1997–2000 interval. The
PSA 1 and 2 components of the wave do appear in phase
quadrature, with PSA 2 leading PSA 1, indicative of
eastward phase propagation also hinted at in the regime
analysis of section 3 (cf. also EOFs 1 and 2 in Fig. 1).
However, the PSA 1 component has considerably higher
amplitude than that of PSA 2.

Figure 7b shows the spatial structure of the oscillation
through a composite half cycle formed by compositing
the reconstruction of the 42-day wave in phase intervals
of 1/8th period (i.e., about every 5 days), using the
technique of Plaut and Vautard (1994). Here we have
plotted the composites of the wave in the PC 1–2 sub-
space, so that the patterns are linear combinations of
PSAs 1 and 2 plotted in Fig. 1. To aid interpretation of
the longitudinal phase progression with time through
the cycle, Fig. 7c shows meridional averages over the
band 508–608S, together with the longitudes of the max-
ima of EOFs 1 and 2. The temporal evolution can be
interpreted as a very gradual eastward propagation, with
rapid intensification of amplitude into category 1, where
the oscillation resembles EOF 1 (i.e., PSA 1). This pat-
tern persists while drifting very slowly eastward into
category 2, before decaying rapidly into an EOF-2-like
pattern (category 3). Thus, these phase composites in-
dicate a predominantly stationary oscillation, with the
peak amplitude corresponding to PSA 1 and the mini-
mum amplitude corresponding to PSA 2. The cyclic
evolution of the wave plotted in Figs. 7b and 7c suggests
a highly dispersive wave, with a eastward group velocity
much exceeding the phase speed. When the phase com-
posites are plotted in the PC 1–6 subspace (in which
the MSSA was computed), the peak phase changes little
while the quadrature phase is no longer recognizable as
PSA 2.

A slow modulation in the amplitude of the 42-day
component is visible in Fig. 7a, but there is no detectable
relationship with ENSO. To determine whether there is
any marked seasonal variation, Fig. 8 shows the vari-
ance of the PSA 1 and 2 components of the 42-day
wave for each season. PSA 1 clearly dominates the var-
iance in all seasons, with largest values in winter/spring
and a minimum in summer. Thus, low-frequency vari-
ability during summer appears less coherent, and is nei-
ther well characterized by oscillatory behavior nor re-
gimes.

5. Relationships between regimes and LFOs

The oscillatory components identified in the previous
section account for only a very small fraction of the
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FIG. 7. The sum of MSSA reconstructed components (RCs) 1 and
2. (a) Channel 1 (solid curve) and channel 2 (dotted curve) plotted
over the 3-yr interval 1997–99. (b) Phase composites over phase
intervals 0–p/4 (1), p/4–p/2 (2), p/2–3p/4 (3), and 7p/4–2p (8),
with negative anomalies shaded. (c) Meridional averages 508–608S
of the maps in (b). Also shown (arrows) are the longitudes of the
maxima of EOFs 1 and 2 (Fig. 1). The units are arbitrary. Panels (b)
and (c) show the projection of the oscillation in the 2D subspace of
PCs 1 and 2 (Fig. 1).

FIG. 8. The seasonal variation of the amplitude of the 42-day wave
reconstructed components (RCs 1–2), in terms of the variance of
channels (PCs) 1 (gray) and 2 (black).

variance, with the 42-day mode accounting for about
5% of the subannual variance of 5-day means over the
South Pacific sector. In this section we explore whether
or not this weak oscillation may nonetheless be related
to the occurrence of the three circulation regimes con-
structed in section 3. To do this, regime occurrence was
simply counted for each of the eight phase categories
of the 42-day oscillation taking the fall, winter, and
spring seasons in turn. Confidence limits for by-chance
occurrence were computed by permutating the order of
the regime occurrence time series 100 times.

There is a highly statistically significant relationship
between the 42-day oscillation and regimes 1 and 3
during winter and spring, as shown in Fig. 9 for regime
1; the frequency of occurrence of regime 3 is generally
the inverse of regime 1 (Table 2). This comes about
because regimes 1 and 3 resemble opposite polarities
of PSA 1, which is also the spatial pattern that dominates
the oscillation (Fig. 7b). Regime 2 also shows a sig-
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FIG. 9. Occurrence frequency of regime 1 for each phase category
of the 42-day wave reconstructed components (RCs 1–2). The error
bars show the 95% range of random sampling.

FIG. 10. Conditional probability of occurrence of regime 1 during
Jun–Aug, taking the phase category of the 42-day wave reconstructed
components (RCs 1–2) as a predictor, as a function of lead time. Error
bars give the 95% range of random sampling.

TABLE 2. The number of days that fall simultaneously into the three clusters (columns) and eight 42-day oscillation p /4 phase categories
(rows). The clusters were determined separately for each season. Values smaller than the 2.5th percentile of random sampling are given in
italics, with those that exceed the 97.5th percentile in boldface.

MAM

1 2 3

JJA

1 2 3

SON

1 2 3

1
2
3
4
5
6
7
8

135
168
183
223
183
162
163
111

126
130
153
155
177
172
155
121

169
132
104

67
80
96

117
203

115
134
201
273
276
247
148

92

115
105
112

96
100
112
166
162

225
156
137

86
59
86

111
171

81
116
213
301
273
257
114

87

149
114

82
64
95

124
145
119

180
190
140

85
82
84

136
224

nificant relationship during several phases of the oscil-
lation, though the changes in its frequency of occurrence
are more moderate, consistent with weakness of the
quadrature phase of the oscillation (Figs. 7b,c). There
is a general regime progression of 1 → 2 → 3 through
the cycle of the 42-day oscillation, which is consistent
with Table 1.

The relationship between the 42-day oscillation and
the frequency of occurrence of the three regimes sug-
gests that the latter may contain some predictability. To
explore this further, we compute the probability of re-
gime occurrence conditional on the lagged phase cat-
egory of the oscillation, following Plaut and Vautard
(1994). Thus, assuming that the phase category of the
oscillation is known at some initial time, we aim to
predict the regime occurrence at later times. Figure 10
shows the probability of regime 1 occurring during win-
ter at lead times up to 50 days, conditional on phase

category of the 42-day oscillation at the initial time.
The results are shown for initial phase categories 1–4,
with similar results obtained for the second half cycle.
The conditional probabilities clearly exceed chance up
to 30 days into the future. Similar results are found for
regime 3, as well as for spring and fall. Regime 2 is
found to be less predictable. Similar results are found
with K 5 2 regimes specified, in which case we recover
EOF 1 (i.e., PSA 1).

The apparent predictability seen in Fig. 10 cannot,
however, be interpreted as hindcast skill because the
probabilities have been computed from the same data
used to determine the regimes and the oscillation.

6. Discussion and conclusions

We have analyzed low-frequency variability in the
NCEP–NCAR reanalysis data of the lower-troposphere
(700 hPa) geopotential height field over the South Pa-
cific sector in terms of geographically fixed circulation
regimes and oscillatory behavior. The regimes were
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identified using a K-means cluster analysis and a cross-
validated Gaussian mixture model, while a multichannel
singular spectrum analysis (MSSA) was used to the
search for oscillatory components.

The spatial structures identified in both types of anal-
ysis are similar to the Pacific–South American (PSA)
wave trains identified in previous studies. The two lead-
ing (T . 10 days) EOFs are usually referred to as PSA
1 and PSA 2 (Fig. 1). In relaxing the orthogonality
constraints inherent in EOF analysis, our results confirm
the physical relevance of EOF 1, since a similar pattern
dominates our oscillatory analysis in terms of amplitude
(Figs. 7b,c). Our analysis of circulation regimes (Fig.
3) also indicates that the leading two EOFs give rea-
sonable approximations of spatial structure, although the
regimes are linear combinations of them (Fig. 2).

Both methods of regime analysis show that low-fre-
quency variability over the South Pacific sector is well
described by three or four recurrent geographically fixed
circulation regimes in austral fall (MAM) and winter
(JJA), and to some extent in spring. Both methods sug-
gest that the regime description is less valid in summer.
The spatial structures of the regimes (Fig. 3) are found
to be very similar in fall, winter, and spring, consisting
of zonal wave trains across the South Pacific. These
patterns are confined to midlatitudes and differ from the
PSA wave trains detected by Mo and Higgins (1998)
in 200-hPa streamfunction that extend into the Tropics.
In further contrast to the latter study, we found no sta-
tistically significant relationships with tropical OLR
and, thus, conclude that the regimes identified here are
intrinsic to the midlatitudes, similar to the interpretation
of Lau et al. (1994). On the other hand, the frequency
of occurrence of regime 3 is highly correlated with
ENSO during austral spring (r 5 0.60 with the Niño-
3.4 index). This is consistent with the study of Cazes-
Boezio et al. (2003), which proposed that interannual
ENSO teleconnections over southeastern South America
could be interpreted in terms of the changes in the fre-
quency of occurrence of intraseasonal circulation re-
gimes during October–December.

The spectral analysis of PSAs 1 and 2 reveals a pre-
dominantly red spectrum, which is consistent with ep-
isodic regime-like behavior where regime durations fol-
low approximately a geometric distribution without a
preferred duration. However, there is evidence of sig-
nificant oscillatory peaks in the 40–50 and 20–30-day
bands. The spectral peaks in PSAs 1 and 2 do not match
closely, suggesting no simple propagating wave. A mul-
tichannel analysis in the subseasonal range identifies a
dominant peak at 42.5 days, which is slightly longer
period than the 36–40-day peak found by Ghil and Mo
(1991) and Mo and Higgins (1998). Phase composites
of this component show that it is dominated by the PSA
1 spatial pattern, and is almost stationary in phase. A
gradual eastward drift of this pattern accompanies its
rapid attenuation, so that the quadrature phase is very
weak in amplitude. The oscillation is present throughout

the year but is most pronounced in austral winter and
spring. No ENSO modulation was found.

Previous studies (e.g., Mo and Higgins 1998) have
interpreted low-frequency variability over the South Pa-
cific in terms of a propagating wave with a period of
about 35–40 days, with an eastward progression char-
acterized by the PSA 1 and PSA 2 patterns. Such a
description would not be compatible with the geograph-
ically fixed circulation regimes. Our analysis does find
strong evidence for the latter in fall and winter. We also
find evidence of an oscillatory component with a period
of about 42 days. These two findings are consistent
because the oscillation is found to be predominantly
stationary in space. Thus, we find that both the episodic
and the oscillatory viewpoints are consistent with each
other, with the regimes characterizing the slow part of
the cycle.

While we have stressed the geographically fixed na-
ture of the PSA patterns, we do find some evidence of
eastward propagation in austral spring. This is brought
out by the transitions between the three regimes iden-
tified in the K-means analysis (Table 1). It is also hinted
at by the increased robustness of the K 5 4 description
in which the four regimes have spatial structures that
are close to PSAs 1 and 2. The Gaussian mixture model
indicates unimodality in spring, arguing against the re-
gime description during spring. It is beyond the scope
of this paper to stratify the oscillatory analysis by sea-
son, but it would be of interest to know if the 42-day
wave has a stronger propagating component during aus-
tral spring.

The 42-day wave is weak, only explaining about 5%
of low-frequency variance, so that its relevance is ques-
tionable. We investigated whether or not a weak oscil-
latory component could nonetheless influence regime
transitions. According to Fig. 9 there is quite a strong
(and highly statistically significant) relationship be-
tween the phase of the 42-day wave and regime occur-
rence during winter and spring. The frequency of oc-
currence of regime 1 (similar to PSA 1) changes by a
factor of 3 between the extreme phases of the oscillation,
suggesting that the oscillatory component is stronger
than its variance indicates. One explanation for this ap-
parent discrepancy would be that the oscillation is some-
what broader band than indicated by the MSSA. The
finding that low-frequency variability over the South
Pacific is characterized by both (i) geographically fixed
PSA-like circulation regimes and (ii) by oscillatory
components has implications for potential predictability.
We find that bias in the frequency of occurrence of each
regime may be strong enough for the oscillation to be
used as a predictor of the probability of regime occur-
rence, up to 30 days in advance in certain cases (Fig.
10), although further work is required to determine
whether there is any useful skill using cross validation.
The predictive nature of the oscillatory component
found here is similar in extent to that reported for the
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TABLE A1. Classifiability (CI) and reproducibility (R) indices for the K-mean analysis as a function of K for each season, both in %. The
reproducibility is given as a range over all the K centroids in the partition. Values of 94% or above are significant, according to an ad hoc
threshold.

K

Summer (DJF)

CI
(%)

R
(%)

Fall (MAM)

CI
(%)

R
(%)

Winter (JJA)

CI
(%)

R
(%)

Spring (SON)

CI
(%)

R
(%)

3
4
5
6
7
8

82
80
80
75
70
64

94–99
97–99
98–99
88–98
95–97
87–93

98
80
97
66
63
65

98–99
88–95
97–99
88–98
80–92
78–92

92
90
82
84
84
68

95–97
98–99
91–98
81–99
90–99
82–94

81
96
93
75
71
76

91–95
98–99
93–99
82–97
88–97
67–96

North Atlantic–European sector by Plaut and Vautard
(1994).
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APPENDIX A

Cluster Analysis

The K-means method is applied in the subspace of
the leading 10 PCs following Michelangeli et al. (1995).
An initial 10% random subset of days is used to deter-
mine the initial seeds, and the algorithm proceeds it-
eratively from the initial seeds, modifying the cluster
centroids (i.e., the means) at each iteration. The clus-
tering is then repeated 50 times to eliminate any sen-
sitivity to initial seeds. The reference partition is defined
from this set of 50 analyses to be the one whose cluster
centroids are most similar to the remaining 49, in terms
of pattern correlation. The sensitivity to the choice of
initial seeds gives a measure of how classifiable the
dataset is for a particular prespecified number of clusters
K. The similarity between two partitions Pi and Pj can
be quantified by the smallest pattern correlation between
a centroid in Pi with its best analog in Pj. A classifia-
bility index (CI) can then be defined as the average of
this similarity value over all pairs of partitions (Mich-
elangeli et al. 1995). The CI is unity for a perfect match
and zero for uncorrelated patterns.

The number of clusters K should also maximize the
reproducibility of the patterns obtained from subsets of
the data (Cheng and Wallace 1993). To quantify repro-
ducibility, random subsets containing 50% of the days
in the dataset are drawn 100 times. Splitting a dataset
into two equal halves is a common device for assessing

robustness. The reference partition is computed for each
50% subset, and its similarity with that of the full dataset
calculated; averaging these similarity values from all
100 subsets defines a reproducibility index (R) for each
value of K. Cheng and Wallace (1993) argue, on the
basis of experience, that two hemispheric patterns bear
a strong resemblance to each other if their pattern cor-
relation is near or above 0.89. They increase this thresh-
old for a sector of the hemisphere to account for the
reduced number of spatial degrees of freedom, so as to
retain a similar value of the Student’s t statistic. For the
1508 South Pacific sector considered here, the corre-
sponding threshold would be 0.94.

Table A1 shows the classifiability and reproducibility
indices (in percent) as a function of K for each 3-month
season. Values of K 5 3–4 in Table A1 generally yield
the best CI and R scores, although the highest values
of these indices do not always clearly point to a partic-
ular value of K. The case of K 5 2 yields almost exactly
EOF 1 in all seasons so that the K-means method does
not yield any additional information to classical EOF
analysis (Michelangeli et al. 1995).

APPENDIX B

The Gaussian Mixture Model

The method of cross-validated maximum likelihood
is used to determine the number of component Gaussian
distributions that provide the best fit to the data. The
cross validation here consists of randomly selecting 25
seasons, training the model on these seasons, and then
validating on the remaining 25. The procedure is re-
peated 20 times. This method provides a rigorous test
of any multimodality in the PDF, against the null hy-
pothesis of a single unimodal Gaussian.

The mixture model was applied to the same season-
ally stratified datasets used for the K-means analysis,
restricting the data to the subspace of the leading two
PCs. The results are shown in Table B1 as a function
of the number of Gaussian components, k. The cross-
validated log-likelihoods are relative measures of like-
lihood, with the maximum (i.e., smallest negative) value
being the most likely. The estimated (posterior) prob-
abilities of each value of k, given the dataset [i.e.,
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TABLE B1. (top) Cross-validated log-likelihood and (bottom) estimated posterior probability of the Gaussian mixture model as a function
of k. The most likely values are highlighted in boldface.

k 5 1 k 5 2 k 5 3 k 5 4 k 5 5 k 5 6

Summer
(DJF)
Fall

(MAM)
Winter
(JJA)

Spring
(SON)

21395.327
0.983

21457.226
0.000

21485.122
0.000

21443.410
0.999

21395.490
0.017

21456.876
0.040

21484.708
0.000

21443.698
0.001

21395.704
0.000

21456.749
0.951

21484.225
0.293

21443.779
0.000

21395.911
0.000

21456.933
0.010

21484.192
0.662

21443.913
0.000

21396.365
0.000

21457.155
0.000

21484.464
0.001

21444.147
0.000

21396.389
0.000

21457.273
0.000

21484.300
0.045

21444.330
0.000

P(k | D)], are also tabulated (see Smyth et al. 1999).
The high posterior probability of k 5 3 in fall is con-
sistent with the cluster analysis in which there is a
unique coincidence of both CI and R values greater than
0.98 (Table A1) with three clusters during the fall.
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